Brain Imaging and Behavior

, Volume 10, Issue 2, pp 619–627 | Cite as

How treatment affects the brain: meta-analysis evidence of neural substrates underpinning drug therapy and psychotherapy in major depression

  • Maddalena Boccia
  • Laura Piccardi
  • Paola Guariglia
Review Article


The idea that modifications of affect, behavior and cognition produced by psychotherapy are mediated by biological underpinnings predates the advent of the modern neurosciences. Recently, several studies demonstrated that psychotherapy outcomes are linked to modifications in specific brain regions. This opened the debate over the similarities and dissimilarities between psychotherapy and pharmacotherapy. In this study, we used activation likelihood estimation meta-analysis to investigate the effects of psychotherapy (PsyTh) and pharmacotherapy (DrugTh) on brain functioning in Major Depression (MD). Our results demonstrate that the two therapies modify different neural circuits. Specifically, PsyTh induces selective modifications in the left inferior and superior frontal gyri, middle temporal gyrus, lingual gyrus and middle cingulate cortex, as well as in the right middle frontal gyrus and precentral gyrus. Otherwise, DrugTh selectively affected brain activation in the right insula in MD patients. These results are in line with previous evidence of the synergy between psychotherapy and pharmacotherapy but they also demonstrate that the two therapies have different neural underpinnings.

Key words

Drug therapy Cognitive-behavioral therapy ALE meta-analysis Treatment effect Insula Major depression 


Human and Animal Rights and Informed Consent

No animal or human studies were carried out by the authors for this article and data from previous studies were collected using Brainmap and PubMed database.

Conflict of interest

Maddalena Boccia, Laura Piccardi and Paola Guariglia declare that they have no conflict of interest.


  1. Barsaglini, A., Sartori, G., Benetti, S., Pettersson-Yeo, W., & Mechelli, A. (2014). The effects of psychotherapy on brain function: a systematic and critical review. Progress in Neurobiology, 114, 1–14.CrossRefPubMedGoogle Scholar
  2. Baxter, L. R., Schwartz, J. M., Bergman, K. S., Szuba, M. P., Guze, B. H., Mazziotta, J. C., Alazraki, A., Selin, C. E., Ferng, H. K., Munford, P., & Phelps, M. E. (1992). Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive- compulsive disorder. Archives of General Psychiatry, 49, 681–689.CrossRefPubMedGoogle Scholar
  3. Bremner, J. D., Vythilingam, M., Vermetten, E., & Charney, D. S. (2007). Effects of antidepressant treatment on neutral correlates of emotional and neutral declarative verbal memory in depression. Journal of Affective Disorders, 101, 99–111.CrossRefPubMedGoogle Scholar
  4. Brockmann, H., Zobel, A., Joe, A., Biermann, K., Scheef, L., Schuhmacher, A., von Widdern, O., Metten, M., Biersack, H. J., Maier, W., & Boecker, H. (2009). The value of HMPAO SPECT in predicting treatment response to citalopram in patients with major depression. Psychiatry Research, 173(2), 107–112.CrossRefPubMedGoogle Scholar
  5. Brody, A. L., Saxena, S., Silverman, D. H., Alborzian, S., Fairbanks, L. A., Phelps, M. E., Huang, S. C., Wu, H. M., Maidment, K., & Baxter, L. R. (1999). Brain metabolic changes in major depressive disorder from pre- to post-treatment with paroxetine. Psychiatry Research, 91, 127–139.CrossRefPubMedGoogle Scholar
  6. Brody, A. L., Saxena, S., Stoessel, P., Gillies, L. A., Fairbanks, L. A., Alborzian, S., Phelps, M. E., Huang, S. C., Wu, H. M., Ho, M. L., Ho, M. K., Au, S. C., Maidment, K., & Baxter, L. R., Jr. (2001). Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy: preliminary findings. Archives of General Psychiatry, 58(7), 631–640.CrossRefPubMedGoogle Scholar
  7. Buchheim, A., Viviani, R., Kessler, H., Kachele, H., Cierpka, M., Roth, G., George, C., Kernberg, O. F., Bruns, G., & Taubner, S. (2012). Changes in prefrontal-limbic function in major depression after 15 months of long- term psychotherapy. PLoS ONE, 7(3), e33745. doi: 10.1371/journal.pone.0033745.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(3), 564–583.CrossRefPubMedGoogle Scholar
  9. Chen, C. H., Ridler, K., Suckling, J., Williams, S., Fu, C. H. Y., Merlo-Pich, E., & Bullmore, E. (2007). Brain imaging correlates of depressive symptom severity and predictors of symptom improvement after antidepressant treatment. Biological Psychiatry, 62, 407–414.CrossRefPubMedGoogle Scholar
  10. Clark, D. A., & Beck, A. T. (2010). Cognitive theory and therapy of anxiety and depression: convergence with neurobiological findings. Trends in Cognitive Sciences, 14(9), 418–424. doi: 10.1016/j.tics.2010.06.007.CrossRefPubMedGoogle Scholar
  11. Costafreda, S. G., Khanna, A., Mourao-Miranda, J., & Fu, C. H. Y. (2009). Neural correlates of sad faces predict clinical remission to cognitive behavioural therapy in depression. Neuroreport, 20, 637–641.CrossRefPubMedGoogle Scholar
  12. Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7, 189–195.CrossRefPubMedGoogle Scholar
  13. Cuijpers, P., Berking, M., Andersson, G., Quigley, L., Kleiboer, A., & Dobson, K. S. (2013a). A meta-analysis of cognitive behavior therapy for adult depression, alone and in comparison to other treatments. Canadian Journal of Psychiatry, 58(7), 376–385.PubMedGoogle Scholar
  14. Cuijpers, P., Hollon, S. D., van Straten, A., Bockting, C., Berking, M., & Andersson, G. (2013b). Does cognitive behaviour therapy have an enduring effect that is superior to keeping patients on continuation pharmacotherapy? A meta-analysis. BMJ Open, 26, 3(4). doi: 10.1136/bmjopen-2012-002542.Google Scholar
  15. Davidson, R. J., Irwin, W., Anderle, M. J., & Kalin, N. H. (2003). The neural substrates of affective processing in depressed patients treated with venlafaxine. American Journal of Psychiatry, 160, 64–75.CrossRefPubMedGoogle Scholar
  16. de Zubicaray, G. I., McMahon, K., Wilson, S. J., & Muthiah, S. (2001). Brain activity during the encoding, retention, and retrieval of stimulus representations. Learning and Memory, 8(5), 243–251.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dichter, G. S., Felder, J. N., & Smoski, M. J. (2009). Affective context interferes with cognitive control in unipolar depression: an fMRI investigation. Journal of Affective Disorders, 114, 131–142.CrossRefPubMedGoogle Scholar
  18. Dichter, G. S., Felder, J. N., & Smoski, M. J. (2010). The effects of brief behavioral activation therapy for depression on cognitive control in affective contexts: an fMRI investigation. Journal of Affective Disorders, 126(1–2), 236–244.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dougherty, D. D., & Rauch, S. L. (1997). Neuroimaging and clinical models of depression. Harvard Review of Psychiatry, 5, 138–159.CrossRefPubMedGoogle Scholar
  20. Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907–2926.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fava, G. A., Rafanelli, C., Grandi, S., Canestrari, R., & Morphy, M. A. (1998). Six-year outcome for cognitive behavioral treatment of residual symptoms in major depression. The American Journal of Psychiatry, 155(10), 1443–1445.CrossRefPubMedGoogle Scholar
  22. Freud, S. (1895). Project for a scientific psychology. in Vintage, THP, 1950.Google Scholar
  23. Fu, C. H. Y., Williams, S. C. R., Cleare, A. J., Brammer, M. J., Walsh, N. D., Kim, J., Andrew, C. M., Pich, E. M., Williams, P. M., & Reed, L. J. (2004). Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Archives of General Psychiatry, 61, 877–889.CrossRefPubMedGoogle Scholar
  24. Fu, C. H. Y., Williams, S., Cleare, A. J., Scott, J., Mitterschiffthaler, M. T., Walsh, N. D., Donaldson, C., Suckling, J., Andrew, C., Steiner, H., & Murray, R. M. (2008). Neural responses to sad facial expressions in major depression following cognitive behavioral therapy. Biological Psychiatry, 64, 505–512.CrossRefPubMedGoogle Scholar
  25. Fu, C. H. Y., Steiner, H., & Costafreda, S. G. (2013). Predictive neural biomarkers of clinical response in depression: a meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiology of Disease, 52, 75–83.Google Scholar
  26. Gelenberg, A. J. (2010). Depression symptomatology and neurobiology. The Journal of Clinical Psychiatry, 71, e02.PubMedGoogle Scholar
  27. Goldapple, K., Segal, Z. V., Garson, C., Lau, M., Bieling, P., Kennedy, S. H., & Mayberg, H. S. (2004). Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Archives of General Psychiatry, 61, 34–41.CrossRefPubMedGoogle Scholar
  28. Grossi, D., Di Vita, A., Palermo, L., Sabatini, U., Trojano, L., & Guariglia, C. (2014). The brain network for self-feeling: a symptom-lesion mapping study. Neuropsychologia, 63, 92–98. doi: 10.1016/j.neuropsychologia.2014.08.004.CrossRefPubMedGoogle Scholar
  29. Gusnard, D. A., Raichle, M. E., & Raichle, M. E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nature Reviews Neuroscience, 2(10), 685–694.CrossRefPubMedGoogle Scholar
  30. Haldane, M., Jogia, J., Cobb, A., Kozuch, E., Kumari, V., & Frangou, S. (2008). Changes in brain activation during working memory and facial recognition tasks in patients with bipolar disorder with Lamotrigine monotherapy. European Neuropsychopharmacology, 18, 48–54.CrossRefPubMedGoogle Scholar
  31. Jogia, J., Haldane, M., Cobb, A., Kumari, V., & Frangou, S. (2008). Pilot investigation of the changes in cortical activation during facial affect recognition with lamotrigine monotherapy in bipolar disorder. British Journal of Psychiatry, 192, 197–201.CrossRefPubMedGoogle Scholar
  32. Kalani, M. Y., Kalani, M. A., Gwinn, R., Keogh, B., & Tse, V. C. (2009). Embryological development of the human insula and its implications for the spread and resection of insular gliomas. Neurosurgical Focus, 27, E2.CrossRefPubMedGoogle Scholar
  33. Kalin, N. H., Davidson, R. J., Irwin, W., Warner, G., Orendi, J. L., Sutton, S. K., Mock, B. J., Sorenson, J. A., Lowe, M., & Turski, P. A. (1997). Functional magnetic resonance imaging studies of emotional processing in normal and depressed patients: effects of venlafaxine. Journal of Clinical Psychiatry, 58, 32–39.CrossRefPubMedGoogle Scholar
  34. Kandel, E. R. (1998). A new intellectual framework for psychiatry. The American Journal of Psychiatry, 155(4), 457–469.CrossRefPubMedGoogle Scholar
  35. Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., & Heatherton, T. F. (2002). Finding the self? An event-related fMRI study. Journal of Cognitive Neuroscience, 14(5), 785–794.CrossRefPubMedGoogle Scholar
  36. Kennedy, S. H., Evans, K. R., Kruger, S., Mayberg, H. S., Meyer, J. H., McCann, S., Arifuzzman, A. I., Houle, S., & Vaccarino, F. J. (2001). Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. American Journal of Psychiatry, 158, 899–905.CrossRefPubMedGoogle Scholar
  37. Kong, L., Wu, F., Tang, Y., Ren, L., & Kong, D. (2014). Frontal-subcortical volumetric deficits in single episode, medication-naive depressed patients and the effects of 8 weeks fluoxetine treatment: a VBM-DARTEL study. PLoS ONE, 9(1), e79055.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Linden, D. E. (2006). How psychotherapy changes the brain-the contribution of functional neuroimaging. Molecular Psychiatry, 11(6), 528–538.CrossRefPubMedGoogle Scholar
  39. Mayberg, H. S. (1997). Limbic-cortical dysregulation: a proposed model of depression. Journal of Neuropsychiatry and Clinical Neurosciences, 9, 471–481.CrossRefPubMedGoogle Scholar
  40. Mayberg, H. S., Brannan, S. K., Tekell, J. L., Silva, J. A., Mahurin, R. K., McGinnis, S., & Jerabek, P. A. (2000). Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biological Psychiatry, 48, 830–843.CrossRefPubMedGoogle Scholar
  41. McGuire, P. K., Bench, C. J., Frith, C. D., Marks, I. M., Frackowiak, R. S. J., & Dolan, R. J. (1994). Functional anatomy of obsessive- compulsive phenomena. British Journal of Psychiatry, 164, 459–468.CrossRefPubMedGoogle Scholar
  42. Nagai, M., Kishi, K., & Kato, S. (2007). Insular cortex and neuropsychiatric disorders: a review of recent literature. European Psychiatry: The Journal of the Association of European Psychiatrists, 22(6), 387–394.CrossRefGoogle Scholar
  43. Pampallona, S., Bollini, P., Tibaldi, G., Kupelnick, B., & Munizza, C. (2004). Combined pharmacotherapy and psychological treatment for depression: a systematic review. Archives of General Psychiatry, 61(7), 714–719.CrossRefPubMedGoogle Scholar
  44. Paykel, E. S., Scott, J., Teasdale, J. D., Johnson, A. L., Garland, A., Moore, R., Jenaway, A., Cornwall, P. L., Hayhurst, H., & Abbott, R. (1999). Prevention of relapse in residual depression by cognitive therapy: a controlled trial. Archives of General Psychiatry, 56(9), 829–835.CrossRefPubMedGoogle Scholar
  45. Petersen, T. J. (2006). Enhancing the efficacy of antidepressants with psychotherapy. Journal of Psychopharmacology, 20(3), 19–28.CrossRefPubMedGoogle Scholar
  46. Pizzagalli, D., Pascual-Marqui, R. D., Nitschke, J. B., Oakes, T. R., Larson, C. L., Abercrombie, H. C., Schaefer, S. M., Koger, J. V., Benca, R. M., & Davidson, R. J. (2001). Anterior cingulate activity as a predictor or degree of treatment response in major depression: evidence from brain electrical tomography analysis. American Journal of Psychiatry, 158, 405–415.CrossRefPubMedGoogle Scholar
  47. Quidé, Y., Witteveen, A. B., El-Hage, W., Veltman, D. J., & Olff, M. (2012). Differences between effects of psychological versus pharmacological treatments on functional and morphological brain alterations in anxiety disorders and major depressive disorder: a systematic review. Neuroscience and Biobehavioral Reviews, 36(1), 626–644.CrossRefPubMedGoogle Scholar
  48. Rauch, S. L., Savage, C. R., Alpert, N. M., Miguel, E. C., Baer, L., Breiter, H. C., Fischman, A. J., Manzo, P. A., Moretti, C., & Jenike, M. A. (1995). A positron emission tomographic study of simple phobic symptom provocation. Archives of General Psychiatry, 52, 20–28.CrossRefPubMedGoogle Scholar
  49. Roffman, J. L., Marci, C. D., Glick, D. M., Dougherty, D. D., & Rauch, S. L. (2005). Neuroimaging and the functional neuroanatomy of psychotherapy. Psychological Medicine, 35(10), 1385–1398.CrossRefPubMedGoogle Scholar
  50. Saxena, S., Brody, A., Ho, M. L., Zohrabi, N., Maidment, K., & Baxter, L. R. (2003). Differential brain metabolic predictors of response to paroxetine in obsessive-compulsive disorder versus major depression. American Journal of Psychiatry, 160, 522–532.CrossRefPubMedGoogle Scholar
  51. Schienle, A., Schäfer, A., Stark, R., & Vaitl, D. (2009). Long-term effects of cognitive behavior therapy on brain activation in spider phobia. Psychiatry Research: Neuroimaging, 172(2), 99–102,Google Scholar
  52. Schnell, K., & Herpertz, S. C. (2007). Effects of dialectic-behavioral-therapy on the neural correlates of affective hyperarousal in borderline personality disorder. Journal of Psychiatric Research, 41, 837–847.CrossRefPubMedGoogle Scholar
  53. Schwartz, J. M., Stoessel, P. W., Baxter, L. R., Martin, K. M., & Phelps, M. E. (1996). Systematic changes in cerebral glucose metabolic rate after successful behavior modification treatment of obsessive-compulsive disorder. Archives of General Psychiatry, 53, 109–113.CrossRefPubMedGoogle Scholar
  54. Teasdale, J. D., Scott, J., Moore, R. G., Hayhurst, H., Pope, M., & Paykel, E. S. (2001). How does cognitive therapy prevent relapse in residual depression? Evidence from a controlled trial. Journal of Consulting and Clinical Psychology, 69(3), 347–357.CrossRefPubMedGoogle Scholar
  55. Thase, M. E., Greenhouse, J. B., Frank, E., Reynolds, C. F., Pilkonis, P. A., Hurley, K., Grochocinski, V., & Kupfer, D. J. (1997). Treatment of major depression with psychotherapy or psychotherapy-pharmacotherapy combinations. Archives of General Psychiatry, 54(11), 1009–1015.CrossRefPubMedGoogle Scholar
  56. Vlassenko, A., Sheline, Y. I., Fischer, K., & Mintun, M. A. (2004). Cerebral perfusion response to successful treatment of depression with different serotoninergic agents. Journal of Neuropsychiatry and Clinical Neurosciences, 16, 360–363.CrossRefPubMedGoogle Scholar
  57. Weingarten, C. P., & Strauman, T. J. (2014). Neuroimaging for psychotherapy research: current trends. Psychotherapy Research: Journal of the Society for Psychotherapy Research. doi: 10.1080/10503307.2014.883088.Google Scholar
  58. Yoshimura, S., Okamoto, Y., Onoda, K., Matsunaga, M., Okada, G., Kunisato, Y., Yoshino, A., Ueda, K., Suzuki, S., & Yamawaki, S. (2014). Cognitive behavioral therapy for depression changes medial prefrontal and ventral anterior cingulate cortex activity associated with self-referential processing. Social Cognition and Affective Neuroscience, 9(4), 487–493.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Maddalena Boccia
    • 1
    • 2
  • Laura Piccardi
    • 2
    • 3
  • Paola Guariglia
    • 4
  1. 1.Department of Psychology“Sapienza” University of RomeRomeItaly
  2. 2.Neuropsychology UnitIRCCS Fondazione Santa LuciaRomeItaly
  3. 3.Department of Life, Health and Environmental SciencesL’Aquila UniversityL’AquilaItaly
  4. 4.Department of Human Science and SocietyUniversity of Enna “Kore”EnnaItaly

Personalised recommendations