Brain Imaging and Behavior

, Volume 10, Issue 2, pp 533–547 | Cite as

Test-retest reliability of high angular resolution diffusion imaging acquisition within medial temporal lobe connections assessed via tract based spatial statistics, probabilistic tractography and a novel graph theory metric

  • T. KuhnEmail author
  • J. M. Gullett
  • P. Nguyen
  • A. E. Boutzoukas
  • A. Ford
  • L. M. Colon-Perez
  • W. Triplett
  • P. R. Carney
  • T. H. Mareci
  • C. C. Price
  • R. M. Bauer
Original Research


This study examined the reliability of high angular resolution diffusion tensor imaging (HARDI) data collected on a single individual across several sessions using the same scanner. HARDI data was acquired for one healthy adult male at the same time of day on ten separate days across a one-month period. Environmental factors (e.g. temperature) were controlled across scanning sessions. Tract Based Spatial Statistics (TBSS) was used to assess session-to-session variability in measures of diffusion, fractional anisotropy (FA) and mean diffusivity (MD). To address reliability within specific structures of the medial temporal lobe (MTL; the focus of an ongoing investigation), probabilistic tractography segmented the Entorhinal cortex (ERc) based on connections with Hippocampus (HC), Perirhinal (PRc) and Parahippocampal (PHc) cortices. Streamline tractography generated edge weight (EW) metrics for the aforementioned ERc connections and, as comparison regions, connections between left and right rostral and caudal anterior cingulate cortex (ACC). Coefficients of variation (CoV) were derived for the surface area and volumes of these ERc connectivity-defined regions (CDR) and for EW across all ten scans, expecting that scan-to-scan reliability would yield low CoVs. TBSS revealed no significant variation in FA or MD across scanning sessions. Probabilistic tractography successfully reproduced histologically-verified adjacent medial temporal lobe circuits. Tractography-derived metrics displayed larger ranges of scanner-to-scanner variability. Connections involving HC displayed greater variability than metrics of connection between other investigated regions. By confirming the test retest reliability of HARDI data acquisition, support for the validity of significant results derived from diffusion data can be obtained.


Diffusion weighted imaging MRI data acquisition reliability Streamline tractography Probabilistic tractography Tract based spatial statistics Structural neuroimaging 



This work was supported by the University of Florida Center for Movement Disorders and Neurorestoration R01 NINDS K23NS60660 (CP); NINDS R01 NS082386; NINR R01 NR014181, awarded to Catherine Price, Ph.D. This research was also conducted while Taylor Kuhn was a Graduate Fellow in the Clinical and Health Psychology Department at the University of Florida. The authors report no conflicts of interest.


  1. Abdi H (2010). Coefficient of variation. Encycl of Research Design, Thousand Oaks.Google Scholar
  2. Armitage, P. A., & Bastin, M. E. (2001). Utilizing the diffusion-to-noise ratio to optimize magnetic resonance diffusion tensor acquisition strategies for improving measurements of diffusion anisotropy. Magnetic Resonance in Medicine, 45(6), 1056–1065.CrossRefPubMedGoogle Scholar
  3. Bach, D. R., Behrens, T. E., Garrido, L., Weiskopf, N., & Dolan, R. J. (2011). Deep and superficial amygdala nuclei projections revealed in vivo by probabilistic tractography. The Journal of Neuroscience, 31(2), 618–623.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bastiani, M., Shah, N. J., Goebel, R., & Roebroeck, A. (2012). Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm. NeuroImage, 62(3), 1732–1749.CrossRefPubMedGoogle Scholar
  5. Basser, P. J., Mattiello, J., & LeBihan, D. (1994). Estimation of the effective self-diffusion tensor from the NMR spin echo. Journal of Magnetic Resonance. Series B, 103, 247–254.CrossRefPubMedGoogle Scholar
  6. Behrens, T. E. J., Johansen-Berg, H., Jbabdi, S., Rushworth, M. F., & Woolrich, M. W. (2007). Probabilistic diffusion tractography with multiple fiber orientations: what can we gain? NeuroImage, 34(1), 144–155.CrossRefPubMedGoogle Scholar
  7. Behrens, T. E. J., Johansen-Berg, H., Woolrich, M. W., Smith, S. M., Wheeler-Kingshott, C. A., Boulby, P. A., Barker, G. J., Sillery, E. L., Sheehan, K., Ciccarelli, O., Thompson, A. J., Brady, J. M., & Matthews, P. M. (2003a). Non-invasivemapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6, 750–757.CrossRefPubMedGoogle Scholar
  8. Behrens, T. E. J., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H., Nunes, R. G., Clare, S., Matthews, P. M., Brady, J. M., & Smith, S. M. (2003b). Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine, 50, 1077–1088.CrossRefPubMedGoogle Scholar
  9. Boersma, M., Smit, D. J., de Bie, H., Van Baal, G. C. M., Boomsma, D. I., de Geus, E. J., & Stam, C. J. (2011). Network analysis of resting state EEG in the developing young brain: structure comes with maturation. Human Brain Mapping, 32(3), 413–425.CrossRefPubMedGoogle Scholar
  10. Buchanan, C. R., Pernet, C. R., Gorgolewski, K. J., Storkey, A. J., & Bastin, M. E. (2014). Test–retest reliability of structural brain networks from diffusion MRI. NeuroImage, 86, 231–243.CrossRefPubMedGoogle Scholar
  11. Catani, M., Howard, R. J., Pajevic, S., & Jones, D. K. (2002). Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage, 17(1), 77–94.CrossRefPubMedGoogle Scholar
  12. Cerliani, L., Thomas, R. M., Jbabdi, S., Siero, J. C., Nanetti, L., Crippa, A.,... & Keysers, C. (2012). Probabilistic tractography recovers a rostrocaudal trajectory of connectivity variability in the human insular cortex. Human Brain Mapping, 33(9), 2005–2034.Google Scholar
  13. Ciccarelli, O., Parker, G. J. M., Toosy, A. T., Wheeler-Kingshott, C. A. M., Barker, G. J., Boulby, P. A.,... & Thompson, A. J. (2003). From diffusion tractography to quantitative white matter tract measures: a reproducibility study. NeuroImage, 18(2), 348–359.Google Scholar
  14. Chrobak, J. J., & Amaral, D. G. (2007). Entorhinal cortex of the monkey: VII. Intrinsic Connections. Journal of Comparative Neurology, 500, 612–633.CrossRefPubMedGoogle Scholar
  15. Conturo, T. E., Lori, N. F., Cull, T. S., Akbudak, E., Snyder, A. Z., Shimony, J. S., & Raichle, M. E. (1999). Tracking neuronal fiber pathways in the living human brain. Proceedings of the National Academy of Sciences, 96(18), 10422–10427.CrossRefGoogle Scholar
  16. Dennis, E. L., Jahanshad, N., Toga, A. W., McMahon, K. L., de Zubicaray, G. I., Martin, N. G.,... & Thompson, P. M. (2012). Test-retest reliability of graph theory measures of structural brain connectivity. In Medical Image Computing and Computer-Assisted InterventionMICCAI 2012 (pp. 305–312). Springer Berlin Heidelberg.Google Scholar
  17. Dickerson, B. C., Fenstermacher, E., Salat, D. H., Wolk, D. A., Maguire, R. P., Desikan, R., & Fischl, B. (2008). Detection of cortical thickness correlates of cognitive performance: reliability across MRI scan sessions, scanners, and field strengths. NeuroImage, 39(1), 10–18.CrossRefPubMedGoogle Scholar
  18. Douw, L., van Dellen, E., de Groot, M., Heimans, J. J., Klein, M., Stam, C. J., & Reijneveld, J. C. (2010). Epilepsy is related to theta band brain connectivity and network topology in brain tumor patients. BMC Neuroscience, 11(1), 103.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dyrby, T. B., Søgaard, L. V., Parker, G. J., Alexander, D. C., Lind, N. M., Baaré, W. F.,... & Jelsing, J. (2007). Validation of in vitro probabilistic tractography. NeuroImage, 37(4), 1267–1277.Google Scholar
  20. Farrell, J. A., Landman, B. A., Jones, C. K., Smith, S. A., Prince, J. L., van Zijl, P., & Mori, S. (2007). Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging–derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T. Journal of Magnetic Resonance Imaging, 26(3), 756–767.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Flint, J. J., Hansen, B., Fey, M., Schmidig, D., King, M. A., Vestergaard-Poulsen, P., & Blackband, S. J. (2010). Cellular-level diffusion tensor microscopy and fiber tracking in mammalian nervous tissue with direct histological correlation. Neuroimage, 52(2), 556–561.Google Scholar
  22. Ford, A. A., Colon-Perez, L., Triplett, W., Gullett, J. M., Mareci, T. H., & FitzGerald, D. B. (2013). Imaging white matter in human brainstem. Frontiers in Human Neuroscience, 7, 400.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Franckό, E., Insausti, AM, Artacho-Pérula E, Insausti, R & Chavoix C. (2012). Identification of the human medial temporal lobe regions on magnetic resonance images. Human Brain Mapping, doi: 10.1002/hbm.22170. [Epub ahead of print];Google Scholar
  24. Gigandet, X., Hagmann, P., Kurant, M., Cammoun, L., Meuli, R., & Thiran, J. P. (2008). Estimating the confidence level of white matter connections obtained with MRI tractography. PloS One, 3(12), e4006.Google Scholar
  25. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V., & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6, 1479–1493.CrossRefGoogle Scholar
  26. Hayasaka, S., & Laurienti, P. J. (2010). Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data. NeuroImage, 50(2), 499–508.CrossRefPubMedGoogle Scholar
  27. Heiervang, E., Behrens, T. E. J., Mackay, C. E., Robson, M. D., & Johansen-Berg, H. (2006). Between session reproducibility and between subject variability of diffusion MR and tractography measures. NeuroImage, 33(3), 867–877.CrossRefPubMedGoogle Scholar
  28. Hua, K., Zhang, J., Wakana, S., Jiang, H., Li, X., Reich, D. S., Calabresi, P. A., Pekar, J. J., can Zijl, P. C., & Mori, S. (2008). Tract probability maps in stereotaxic spaces: analysis of white matter anatomy and tract-specific quantification. NeuroImage, 39(1), 336–347.CrossRefPubMedGoogle Scholar
  29. Insausti, R., Juottonen, K., Soininen, H., Insausti, A. M., Partanen, K., Vainio, P., & Pitkänen, A. (1998). MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. American Journal of Neuroradiology, 19(4), 659–671.PubMedGoogle Scholar
  30. Jenkinson, M., & Smith, S. M. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5(2), 143–156.CrossRefPubMedGoogle Scholar
  31. Jian, B., Vemuri, B. C., Ozarslan, E., Carney, P. R., & Mareci, T. H. (2007). A novel tensor distribution model for the diffusion-weighted MR signal. NeuroImage, 37, 164–176.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jovicich, J., Czanner, S., Han, X., Salat, D., van der Kouwe, A., Quinn, B.,... & Fischl, B. (2009). MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. NeuroImage, 46(1), 177–192.Google Scholar
  33. Kuhn, T., Gullett, J. M., Boutzoukas, A. E., Ford, A., Mareci, T. H., Carney, P.R., FitzGerald, D. B. , Bauer, R. M. (Submitted). Temporal Lobe Epilepsy Affects Spatial Organization of Entorhinal Cortex Connectivity. .Google Scholar
  34. Le Bihan, D., & Van Zijl, P. (2002). From the diffusion coefficient to the diffusion tensor. NMR in Biomedicine, 15(7–8), 431–434.CrossRefPubMedGoogle Scholar
  35. Lin, C. P., Wedeen, V. J., Chen, J. H., Yao, C., & Tseng, W. Y. I. (2003). Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms. NeuroImage, 19(3), 482–495.CrossRefPubMedGoogle Scholar
  36. MacKay, D. J. C. (1995). Probable networks and plausible predictions - a review of practical bayesian models methods for supervised neural networks. Networks: Comparative in Neurology Science, 6, 469–505.CrossRefGoogle Scholar
  37. Mori, S., Wakana, S., Nagae-Poetscher, L. M., & van Zijl, P. C. M. (2005). MRI atlas of human white matter. American Joural of Neuroradiology, 27, 1384–1385.Google Scholar
  38. Owen, J. P., Ziv, E., Bukshpun, P., Pojman, N., Wakahiro, M., Berman, J. I.,... & Mukherjee, P. (2013). Test–retest reliability of computational network measurements derived from the structural connectome of the human brain.Brain Connectivity, 3(2), 160–176.Google Scholar
  39. Patenaude, B., Smith, S. M., Kennedy, D., & Jenkinson, M. A. (2011). Bayesian model of shape and appearance for subcortical brain. NeuroImage, 56(3), 907–922.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pfefferbaum, A., Adalsteinsson, E., & Sullivan, E. V. (2003). Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain. Journal of Magnetic Resonance Imaging, 18(4), 427–433.CrossRefPubMedGoogle Scholar
  41. Poppenk, J., Evensmoen, H. R., Moscovitch, M., & Nadel, L. (2013). Long-axis specialization of the human hippocampus. Trends in Cognitive Sciences, 17(5), 230–240.CrossRefPubMedGoogle Scholar
  42. Pierpaoli, C., Jezzard, P., Basser, P. J., Barnett, A., & Di Chiro, G. (1996). Diffusion tensor MR imaging of the human brain. Radiology, 201(3), 637–648.CrossRefPubMedGoogle Scholar
  43. Rana, A. K., Wardlaw, J. M., Armitage, P. A., & Bastin, M. E. (2003). Apparent diffusion coefficient (ADC) measurements may be more reliable and reproducible than lesion volume on diffusion-weighted images from patients with acute ischaemic stroke–implications for study design. Magnetic Resonance Imaging, 21(6), 617–624.CrossRefPubMedGoogle Scholar
  44. Richiardi, J., Eryilmaz, H., Schwartz, S., Vuilleumier, P., & Van De Ville, D. (2011). Decoding brain states from fMRI connectivity graphs. Neuroimage,56(2), 616–626.Google Scholar
  45. Rogalski, E. J., Murphy, C. M., deToledo-Morrell, L., Shah, R. C., Moseley, M. E., Bammer, R., & Stebbins, G. T. (2009). Changes in parahippocampal white matter integrity in amnestic mild cognitive impairment: a diffusion tensor imaging study. Behavioural Neurology, 21(1), 51–61.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Saygin, Z. M., Osher, D. E., Augustinack, J., Fischl, B., & Gabrieli, J. D. (2011). Connectivity-based segmentation of human amygdala nuclei using probabilistic tractography. NeuroImage, 56(3), 1353–1361.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Smith, S. M. (2002b). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155.CrossRefPubMedGoogle Scholar
  48. Smith, S. M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P. M., Federico, A., & De Stefano, N. (2002). Accurate, robust and automated longitudinal and cross-sectional brain change analysis. NeuroImage, 17(1), 479–489.CrossRefPubMedGoogle Scholar
  49. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M., & Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(S1), 208–219.CrossRefGoogle Scholar
  50. Sporns, O. (2007). Brain connectivity. Scholarpedia, 2(10), 4695.CrossRefGoogle Scholar
  51. Stam, C. J., De Haan, W., Daffertshofer, A., Jones, B. F., Manshanden, I., van Walsum, A. V. C., & Scheltens, P. (2009). Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain,132(1), 213–224.Google Scholar
  52. Teipel, S. J., Reuter, S., Stieltjes, B., Acosta-Cabronero, J., Ernemann, U., Fellgiebel, A., & Hampel, H. (2011). Multicenter stability of diffusion tensor imaging measures: a European clinical and physical phantom study. Psychiatry Research: Neuroimaging, 194(3), 363–371.CrossRefPubMedGoogle Scholar
  53. Tournier, J. D., Calamante, F., Gadian, D. G., & Connelly, A. (2004). Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage, 23(3), 1176–1185.CrossRefPubMedGoogle Scholar
  54. Tuch D.S., Weisskoff R.M., Belliveau J.W., Wedeen V.J. (1999). High angular resolution diffusion imaging of the human brain. Proceedings of the 7th Annual Meeting of ISMRM, Philadelphia, p 321.Google Scholar
  55. Tuch, D. S., Reese, T. G., Wiegell, M. R., & Wedeen, V. J. (2003). Diffusion MRI of complex neural architecture. Neuron, 40(5), 885–895.CrossRefPubMedGoogle Scholar
  56. Winterburn, J. L., Pruessner, J. C., Chavez, S., Schira, M. M., Lobaugh, N. J., Voineskos, A. N., & Chakravarty, M. M. (2013). A novel in vivo atlas of human hippocampal subfields using high-resolution 3 T magnetic resonance imaging. NeuroImage, 74, 254–265.CrossRefPubMedGoogle Scholar
  57. Yeh, F. C., Wedeen, V. J., & Tseng, W. Y. I. (2009). Practical crossing fiber imaging with combined DTI datasets and generalized reconstruction algorithm. In Proc. Intl. Soc. Mag. Reson. Med (Vol. 17, p. 365).Google Scholar
  58. Zhao, T., Duan, F., Liao, X., Dai, Z., Cao, M., He, Y., & Shu, N. (2015). Test-retest reliability of white matter structural brain networks: a multiband diffusion MRI study. Name: Frontiers in Human Neuroscience, 9, 59.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • T. Kuhn
    • 1
    Email author
  • J. M. Gullett
    • 1
    • 9
  • P. Nguyen
    • 1
  • A. E. Boutzoukas
    • 1
  • A. Ford
    • 6
    • 9
  • L. M. Colon-Perez
    • 8
  • W. Triplett
    • 3
  • P. R. Carney
    • 4
    • 5
    • 6
    • 7
  • T. H. Mareci
    • 2
  • C. C. Price
    • 1
  • R. M. Bauer
    • 1
    • 9
  1. 1.Department of Clinical and Health PsychologyUniversity of FloridaGainesvilleUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleUSA
  3. 3.Department of Physical TherapyUniversity of FloridaGainesvilleUSA
  4. 4.Department of PediatricsUniversity of FloridaGainesvilleUSA
  5. 5.Department of NeurologyUniversity of FloridaGainesvilleUSA
  6. 6.Department of NeuroscienceUniversity of FloridaGainesvilleUSA
  7. 7.Department of J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleUSA
  8. 8.Department of PhysicsUniversity of FloridaGainesvilleUSA
  9. 9.Department of VA Brain Rehabilitation Research CenterMalcolm Randall VA CenterGainesvilleUSA

Personalised recommendations