Brain Imaging and Behavior

, Volume 10, Issue 2, pp 387–407 | Cite as

A preliminary study of the effects of working memory training on brain function

  • Michael C. Stevens
  • Alexandra Gaynor
  • Katie L. Bessette
  • Godfrey D. Pearlson
Original Research


Working memory (WM) training improves WM ability in Attention-Deficit/Hyperactivity Disorder (ADHD), but its efficacy for non-cognitive ADHD impairments ADHD has been sharply debated. The purpose of this preliminary study was to characterize WM training-related changes in ADHD brain function and see if they were linked to clinical improvement. We examined 18 adolescents diagnosed with DSM-IV Combined-subtype ADHD before and after 25 sessions of WM training using a frequently employed approach (Cogmed™) using a nonverbal Sternberg WM fMRI task, neuropsychological tests, and participant- and parent-reports of ADHD symptom severity and associated functional impairment. Whole brain SPM8 analyses identified ADHD activation deficits compared to 18 non-ADHD control participants, then tested whether impaired ADHD frontoparietal brain activation would increase following WM training. Post hoc tests examined the relationships between neural changes and neurocognitive or clinical improvements. As predicted, WM training increased WM performance, ADHD clinical functioning, and WM-related ADHD brain activity in several frontal, parietal and temporal lobe regions. Increased left inferior frontal sulcus region activity was seen in all Encoding, Maintenance, and Retrieval Sternberg task phases. ADHD symptom severity improvements were most often positively correlated with activation gains in brain regions known to be engaged for WM-related executive processing; improvement of different symptom types had different neural correlates. The responsiveness of both amodal WM frontoparietal circuits and executive process-specific WM brain regions was altered by WM training. The latter might represent a promising, relatively unexplored treatment target for researchers seeking to optimize clinical response in ongoing ADHD WM training development efforts.


ADHD Working memory Training FMRI Brain 



This research was supported by R21HD061915 and by R01MH081969. Preliminary results were presented at the annual meeting of the Society for Biological Psychiatry in June 2013 in San Francisco, CA.

Financial disclosures

The investigators have no conflicts of interest to declare.

Supplementary material

11682_2015_9416_Fig8_ESM.gif (2.9 mb)
Supplementary Figure 1

Brain regions activated during the Encoding, Maintenance, and Retrieval conditions of the Sternberg working memory fMRI task for all n = 36 ADHD and non-ADHD participants (p < 0.05 uncorrected). (GIF 2.94 mb)

11682_2015_9416_MOESM1_ESM.tif (10.3 mb)
High resolution image file (TIFF 10.3 mb)
11682_2015_9416_Fig9_ESM.gif (2.9 mb)
Supplementary Figure 2

Parametric effect of WM load on activation in Encoding, Maintenance, and Retrieval conditions of the Sternberg working memory fMRI task for all n = 36 ADHD and non-ADHD participants (p < 0.05 uncorrected). (GIF 2.86 mb)

11682_2015_9416_MOESM2_ESM.tif (10.3 mb)
High resolution image file (TIFF 10.3 mb)
11682_2015_9416_Fig10_ESM.gif (1.6 mb)
Supplementary Figure 3

Brain regions where training-related changes in the brain’s response to task difficulty (i.e., parametric effect of WM load) correlated with improvement in the Cogmed Training change (p < 0.05 clusterwise significance threshold). (GIF 1.63 mb)

11682_2015_9416_MOESM3_ESM.tif (7 mb)
High resolution image file (TIFF 6.99 mb)
11682_2015_9416_MOESM4_ESM.docx (38 kb)
Tables S1-3 (DOCX 37.5 kb)


  1. Backman, L., & Nyberg, L. (2013). Dopamine and training-related working-memory improvement. Neuroscience & Biobehavioral Reviews, 37, 2209–2219.CrossRefGoogle Scholar
  2. Baddeley, A. (1992). Working memory. Science, 255, 556–559.PubMedCrossRefGoogle Scholar
  3. Badre, D., & Wagner, A. D. (2005). Frontal lobe mechanisms that resolve proactive interference. Cerebral Cortex, 15, 2003–2012.PubMedCrossRefGoogle Scholar
  4. Barkley, R. A., & Murphy, K. R. (1998). Attention-deficit hyperactivity disorder: A clinical workbook (2nd ed., ). New York:The Guilford Press.Google Scholar
  5. Bayerl, M., Dielentheis, T. F., Vucurevic, G., Gesierich, T., Vogel, F., Fehr, C., Stoeter, P., Huss, M., & Konrad, A. (2010). Disturbed brain activation during a working memory task in drug-naive adult patients with ADHD. Neuroreport, 21, 442–446.PubMedCrossRefGoogle Scholar
  6. Beauregard, M. (2009). Effect of mind on brain activity: evidence from neuroimaging studies of psychotherapy and placebo effect. Nordic Journal of Psychiatry, 63, 5–16.PubMedCrossRefGoogle Scholar
  7. Beck, S. J., Hanson, C. A., Puffenberger, S. S., Benninger, K. L., & Benninger, W. B. (2010). A controlled trial of working memory training for children and adolescents with ADHD. Journal of Clinical Child and Adolescent Psychology, 39, 825–836.PubMedCrossRefGoogle Scholar
  8. Bedard, A. C., Jain, U., Johnson, S. H., & Tannock, R. (2007). Effects of methylphenidate on working memory components: influence of measurement. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 48, 872–880.PubMedCrossRefGoogle Scholar
  9. Biederman, J., Seidman, L. J., Petty, C. R., Fried, R., Doyle, A. E., Cohen, D. R., Kenealy, D. C., & Faraone, S. V. (2008). Effects of stimulant medication on neuropsychological functioning in young adults with attention-deficit/hyperactivity disorder. The Journal of Clinical Psychiatry, 69, 1150–1156.PubMedCrossRefGoogle Scholar
  10. Brown, T. E. (2001). Brown attention-deficit disorder scales for adolescents and adults. San Antonio, TX:Harcourt Assessment.Google Scholar
  11. Buhner, M., König, C. J., Prick, M., & Krumm, S. (2006). Working memory dimensions as differential predictors of the speed and error aspect of multitasking performance. Human Performance, 19.Google Scholar
  12. Burgess, G. C., Depue, B. E., Ruzic, L., Willcutt, E. G., Du, Y. P., & Banich, M. T. (2010). Attentional control activation relates to working memory in attention-deficit/hyperactivity disorder. Biological Psychiatry, 67, 632–640.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Buschkuehl, M., Jaeggi, S. M., & Jonides, J. (2012). Neuronal effects following working memory training. Dev Cogn Neurosci, 2(Suppl 1), S167–S179.PubMedCrossRefGoogle Scholar
  14. Castellanos, F. X., & Proal, E. (2012). Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends in Cognitive Sciences, 16, 17–26.PubMedCrossRefGoogle Scholar
  15. Chacko, A., Bedard, A. C., Marks, D. J., Feirsen, N., Uderman, J. Z., Chimiklis, A., Rajwan, E., Cornwell, M., Anderson, L., Zwilling, A., & Ramon, M. (2014). A randomized clinical trial of cogmed working memory training in school-age children with ADHD: a replication in a diverse sample using a control condition. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 55, 247–255.PubMedCrossRefGoogle Scholar
  16. Chacko, A., Feirsen, N., Bedard, A. C., Marks, D., Uderman, J. Z., & Chimiklis, A. (2013). Cogmed working memory training for youth with ADHD: a closer examination of efficacy utilizing evidence-based criteria. Journal of Clinical Child and Adolescent Psychology, 42, 769–783.PubMedCrossRefGoogle Scholar
  17. Chein, J. M., Moore, A. B., & Conway, A. R. (2011). Domain-general mechanisms of complex working memory span. NeuroImage, 54, 550–559.PubMedCrossRefGoogle Scholar
  18. Cortese, S., Ferrin, M., Brandeis, D., Buitelaar, J., Daley, D., Dittmann, R. W., Holtmann, M., Santosh, P., Stevenson, J., Stringaris, A., Zuddas, A., Sonuga-Barke, E. J., & European, A. G. G. (2015). Cognitive training for attention-deficit/hyperactivity disorder: meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. Journal of the American Academy of Child and Adolescent Psychiatry, 54, 164–174.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cortese, S., Kelly, C., Chabernaud, C., Proal, E., Di Martino, A., Milham, M. P., & Castellanos, F. X. (2012). Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. The American Journal of Psychiatry, 169, 1038–1055.PubMedCrossRefGoogle Scholar
  20. Cubillo, A., Smith, A. B., Barrett, N., Giampietro, V., Brammer, M., Simmons, A., & Rubia, K. (2014). Drug-specific laterality effects on frontal lobe activation of atomoxetine and methylphenidate in attention deficit hyperactivity disorder boys during working memory. Psychological Medicine, 44, 633–646.PubMedCrossRefGoogle Scholar
  21. Dahlin, E., Backman, L., Neely, A. S., & Nyberg, L. (2009). Training of the executive component of working memory: subcortical areas mediate transfer effects. Restorative Neurology and Neuroscience, 27, 405–419.PubMedGoogle Scholar
  22. Dahlin, E., Neely, A. S., Larsson, A., Backman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320, 1510–1512.PubMedCrossRefGoogle Scholar
  23. Dahlin, K. I. E. (2013). Working memory training and the effect on mathematical achievement in chidilren with attention deficits and special needs. Journal of Education and Learning, 2, 118–133.CrossRefGoogle Scholar
  24. Egeland, J., Aarlien, A.K., Saunes, B.K., 2013. Few effects of far transfer of working memory training in ADHD: a randomized controlled trial. PloS One 8, e75660.Google Scholar
  25. Engle, R. W., Carullo, J. J., & Collins, K. W. (1991). Individual differences in the role of working memory in comprehension and following directions. The Journal of Educational Research, 84.Google Scholar
  26. Epstein, J. N., Conners, C. K., Hervey, A. S., Tonev, S. T., Arnold, L. E., Abikoff, H. B., Elliott, G., Greenhill, L. L., Hechtman, L., Hoagwood, K., Hinshaw, S. P., Hoza, B., Jensen, P. S., March, J. S., Newcorn, J. H., Pelham, W. E., Severe, J. B., Swanson, J. M., Wells, K., Vitiello, B., Wigal, T., Group, M. T. A. C. S., 2006. Assessing medication effects in the MTA study using neuropsychological outcomes. Journal of Child Psychology and Psychiatry, and Allied Disciplines 47, 446–456.PubMedCrossRefGoogle Scholar
  27. Evans, S. W., Owens, J. S., & Bunford, N. (2013). Evidence-based psychosocial treatments for children and adolescents with attention-deficit/hyperactivity disorder. J Clin Child Adolesc Psychol.Google Scholar
  28. Everett, J., Thomas, J., Cote, F., Levesque, J., & Michaud, D. (1991). Cognitive effects of psychostimulant medication in hyperactive children. Child Psychiatry and Human Development, 22, 79–87.PubMedCrossRefGoogle Scholar
  29. Fassbender, C., Schweitzer, J. B., Cortes, C. R., Tagamets, M. A., Windsor, T. A., Reeves, G. M., & Gullapalli, R. (2011). Working memory in attention deficit/hyperactivity disorder is characterized by a lack of specialization of brain function. PloS One, 6, e27240.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Frazier, T. W., Demaree, H. A., & Youngstrom, E. A. (2004). Meta-analysis of intellectual and neuropsychological test performance in attention-deficit/hyperactivity disorder. Neuropsychology, 18, 543–555.PubMedCrossRefGoogle Scholar
  31. Freire, L., & Mangin, J. F. (2001). Motion correction algorithms may create spurious brain activations in the absence of subject motion. NeuroImage, 14, 709–722.PubMedCrossRefGoogle Scholar
  32. Frey, S., Campbell, J. S., Pike, G. B., & Petrides, M. (2008). Dissociating the human language pathways with high angular resolution diffusion fiber tractography. The Journal of Neuroscience, 28, 11435–11444.PubMedCrossRefGoogle Scholar
  33. Gathercole, S. E., Dunning, D. L., & Holmes, J. (2012). Cogmed training: let's be realistic about intervention research. Journal of Applied Research in Memory and Cognition, 1, 201–203.CrossRefGoogle Scholar
  34. Gathercole, S. E., Durling, E., Evans, M., Jeffcock, S., & Stone, S. (2008). Working memory deficits in laboratory analogues of activities. Applied Cognitive Psychology, 22.Google Scholar
  35. Gibson, B. S., Gondoli, D. M., Johnson, A. C., & Robison, M. K. (2014). Recall initiation strategies must be controlled in training studies that use immediate free recall tasks to measure the components of working memory capacity across time. Child Neuropsychology, 20, 539–556.PubMedCrossRefGoogle Scholar
  36. Gibson, B. S., Gondoli, D. M., Johnson, A. C., Steeger, C. M., Dobrzenski, B. A., & Morrissey, R. A. (2011). Component analysis of verbal versus spatial working memory training in adolescents with ADHD: a randomized, controlled trial. Child Neuropsychology, 17, 546–563.PubMedCrossRefGoogle Scholar
  37. Gibson, B. S., Gondoli, D. M., Johnson, A. C., Steeger, C. M., & Morrissey, R. A. (2012). The future promise of cogmed working memory training. Journal of Applied Research in Memory and Cognition, 1, 214–216.CrossRefGoogle Scholar
  38. Gibson, B. S., Gondoli, D. M., Kronenberger, W. G., Johnson, A. C., Steeger, C. M., & Morrissey, R. A. (2013). Exploration of an adaptive training regimen that can target the secondary memory component of working memory capacity. Memory & Cognition, 41, 726–737.CrossRefGoogle Scholar
  39. Gray, S. A., Chaban, P., Martinussen, R., Goldberg, R., Gotlieb, H., Kronitz, R., Hockenberry, M., & Tannock, R. (2012). Effects of a computerized working memory training program on working memory, attention, and academics in adolescents with severe LD and comorbid ADHD: a randomized controlled trial. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 53, 1277–1284.PubMedCrossRefGoogle Scholar
  40. Green, C. T., Long, D. L., Green, D., Iosif, A. M., Dixon, J. F., Miller, M. R., Fassbender, C., & Schweitzer, J. B. (2012). Will working memory training generalize to improve off-task behavior in children with attention-deficit/hyperactivity Disorder? Neurotherapeutics, 9, 639–648.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gropper, R. J., Gotlieb, H., Kronitz, R., & Tannock, R. (2014). Working memory training in college students with ADHD or LD. Journal of Attention Disorders, 18, 331–345.PubMedCrossRefGoogle Scholar
  42. Gualtieri, C. T., & Johnson, L. G. (2008). Medications do not necessarily normalize cognition in ADHD patients. Journal of Attention Disorders, 11, 459–469.PubMedCrossRefGoogle Scholar
  43. Haier, R. J., Siegel Jr., B. V., MacLachlan, A., Soderling, E., Lottenberg, S., & Buchsbaum, M. S. (1992). Regional glucose metabolic changes after learning a complex visuospatial/motor task: a positron emission tomographic study. Brain Research, 570, 134–143.PubMedCrossRefGoogle Scholar
  44. Hale, T. S., Bookheimer, S., McGough, J. J., Phillips, J. M., & McCracken, J. T. (2007). Atypical brain activation during simple & complex levels of processing in adult ADHD: an fMRI study. Journal of Attention Disorders, 11, 125–140.PubMedCrossRefGoogle Scholar
  45. Hambrick, D. Z., Oswald, F. L., Darowski, E. S., Rench, T. A., & Brou, R. (2010). Predictors of multitasking performance in a synthetic work paradigm. Applied Cognitive Psychology, 24.Google Scholar
  46. Hempel, A., Giesel, F. L., Garcia Caraballo, N. M., Amann, M., Meyer, H., Wustenberg, T., Essig, M., & Schroder, J. (2004). Plasticity of cortical activation related to working memory during training. The American Journal of Psychiatry, 161, 745–747.PubMedCrossRefGoogle Scholar
  47. Hodgson, K., Hutchinson, A. D., & Denson, L. (2014). Nonpharmacological treatments for ADHD: a meta-analytic review. Journal of Attention Disorders, 18, 275–282.PubMedCrossRefGoogle Scholar
  48. Hoekzema, E., Carmona, S., Ramos-Quiroga, J. A., Barba, E., Bielsa, A., Tremols, V., Rovira, M., Soliva, J. C., Casas, M., Bulbena, A., Tobena, A., & Vilarroya, O. (2011). Training-induced neuroanatomical plasticity in ADHD: a tensor-based morphometric study. Human Brain Mapping, 32, 1741–1749.PubMedCrossRefGoogle Scholar
  49. Hoekzema, E., Carmona, S., Tremols, V., Gispert, J. D., Guitart, M., Fauquet, J., Rovira, M., Bielsa, A., Soliva, J. C., Tomas, X., Bulbena, A., Ramos-Quiroga, A., Casas, M., Tobena, A., & Vilarroya, O. (2010). Enhanced neural activity in frontal and cerebellar circuits after cognitive training in children with attention-deficit/hyperactivity disorder. Human Brain Mapping, 31, 1942–1950.PubMedCrossRefGoogle Scholar
  50. Holmes, J., Gathercole, S. E., & Dunning, D. L. (2010). Poor working memory: impact and interventions. Advances in Child Development and Behavior, 39, 1–43.PubMedCrossRefGoogle Scholar
  51. Hovik, K.T., Saunes, B.K., Aarlien, A.K., Egeland, J., 2013. RCT of working memory training in ADHD: long-term near-transfer effects. PloS One 8, e80561.Google Scholar
  52. Jefferies, E. (2013). The neural basis of semantic cognition: converging evidence from neuropsychology, neuroimaging and TMS. Cortex, 49, 611–625.PubMedCrossRefGoogle Scholar
  53. Jolles, D. D., Grol, M. J., Van Buchem, M. A., Rombouts, S. A., & Crone, E. A. (2010). Practice effects in the brain: changes in cerebral activation after working memory practice depend on task demands. NeuroImage, 52, 658–668.PubMedCrossRefGoogle Scholar
  54. Jonides, J., & Nee, D. E. (2006). Brain mechanisms of proactive interference in working memory. Neuroscience, 139, 181–193.PubMedCrossRefGoogle Scholar
  55. Kane, M. J., Brown, L. H., McVay, J. C., Silvia, P. J., Myin-Germeys, I., & Kwapil, T. R. (2007). For whom the mind wanders, and when: an experience-sampling study of working memory and executive control in daily life. Psychological Science, 18, 614–621.PubMedCrossRefGoogle Scholar
  56. Kasper, L. J., Alderson, R. M., & Hudec, K. L. (2012). Moderators of working memory deficits in children with attention-deficit/hyperactivity disorder (ADHD): a meta-analytic review. Clinical Psychology Review, 32, 605–617.PubMedCrossRefGoogle Scholar
  57. Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., Williamson, D., & Ryan, N. (1997). Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 980–988.PubMedCrossRefGoogle Scholar
  58. Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14, 317–324.PubMedCrossRefGoogle Scholar
  59. Klingberg, T. (2012). Training of working memory and attention. In M. I. Posner (Ed.), Cognitive neuroscience of attention (pp. 475–486). New York, NY: The Guilford Press.Google Scholar
  60. Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlstrom, K., Gillberg, C. G., Forssberg, H., & Westerberg, H. (2005). Computerized training of working memory in children with ADHD–a randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44, 177–186.PubMedCrossRefGoogle Scholar
  61. Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24, 781–791.PubMedCrossRefGoogle Scholar
  62. Ko, C. H., Yen, J. Y., Yen, C. F., Chen, C. S., Lin, W. C., Wang, P. W., & Liu, G. C. (2013). Brain activation deficit in increased-load working memory tasks among adults with ADHD using fMRI. European Archives of Psychiatry and Clinical Neuroscience, 263, 561–573.PubMedCrossRefGoogle Scholar
  63. Kobel, M., Bechtel, N., Weber, P., Specht, K., Klarhofer, M., Scheffler, K., Opwis, K., & Penner, I. K. (2009). Effects of methylphenidate on working memory functioning in children with attention deficit/hyperactivity disorder. European Journal of Paediatric Neurology, 13, 516–523.PubMedCrossRefGoogle Scholar
  64. Kofler, M. J., Rapport, M. D., Bolden, J., Sarver, D. E., & Raiker, J. S. (2010). ADHD and working memory: the impact of central executive deficits and exceeding storage/rehearsal capacity on observed inattentive behavior. Journal of Abnormal Child Psychology, 38, 149–161.PubMedCrossRefGoogle Scholar
  65. Kofler, M. J., Rapport, M. D., Bolden, J., Sarver, D. E., Raiker, J. S., & Alderson, R. M. (2011). Working memory deficits and social problems in children with ADHD. Journal of Abnormal Child Psychology, 39, 805–817.PubMedCrossRefGoogle Scholar
  66. Makris, N., Biederman, J., Monuteaux, M. C., & Seidman, L. J. (2009). Towards conceptualizing a neural systems-based anatomy of attention-deficit/hyperactivity disorder. Developmental Neuroscience, 31, 36–49.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Makris, N., Kennedy, D. N., McInerney, S., Sorensen, A. G., Wang, R., Caviness Jr., V. S., & Pandya, D. N. (2005). Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cerebral Cortex, 15, 854–869.PubMedCrossRefGoogle Scholar
  68. Malisza, K. L., Buss, J. L., Bolster, R. B., de Gervai, P. D., Woods-Frohlich, L., Summers, R., Clancy, C. A., Chudley, A. E., & Longstaffe, S. (2012). Comparison of spatial working memory in children with prenatal alcohol exposure and those diagnosed with ADHD; a functional magnetic resonance imaging study. Journal of Neurodevelopmental Disorders, 4, 12.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Martinussen, R., Hayden, J., Hogg-Johnson, S., & Tannock, R. (2005). A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 44, 377–384.PubMedCrossRefGoogle Scholar
  70. Massat, I., Slama, H., Kavec, M., Linotte, S., Mary, A., Baleriaux, D., Metens, T., Mendlewicz, J., Peigneux, P., 2012. Working memory-related functional brain patterns in never medicated children with ADHD. PloS One 7, e49392.Google Scholar
  71. Mehta, M. A., Goodyer, I. M., & Sahakian, B. J. (2004). Methylphenidate improves working memory and set-shifting in AD/HD: relationships to baseline memory capacity. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 45, 293–305.PubMedCrossRefGoogle Scholar
  72. Melby-Lervag, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49, 270–291.PubMedCrossRefGoogle Scholar
  73. Mezzacappa, E., & Buckner, J. C. (2010). Working memory training for chilidren with attention problems or hyperactivity: a school-based pilot study. School Mental Health, 2, 202–208.CrossRefGoogle Scholar
  74. Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin & Review, 18, 46–60.CrossRefGoogle Scholar
  75. Nee, D. E., Brown, J. W., Askren, M. K., Berman, M. G., Demiralp, E., Krawitz, A., & Jonides, J. (2013). A meta-analysis of executive components of working memory. Cerebral Cortex, 23, 264–282.PubMedCrossRefGoogle Scholar
  76. Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience & Biobehavioral Reviews, 33, 1004–1023.CrossRefGoogle Scholar
  77. Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7, 75–79.PubMedCrossRefGoogle Scholar
  78. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25, 46–59.PubMedCrossRefGoogle Scholar
  79. Passarotti, A. M., Sweeney, J. A., & Pavuluri, M. N. (2010). Emotion processing influences working memory circuits in pediatric bipolar disorder and attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 49, 1064–1080.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Pearson, I. (2014). Research coaching manual: Cogmed working memory training. Inc:Pearson.Google Scholar
  81. Pietrzak, R. H., Mollica, C. M., Maruff, P., & Snyder, P. J. (2006). Cognitive effects of immediate-release methylphenidate in children with attention-deficit/hyperactivity disorder. Neuroscience & Biobehavioral Reviews, 30, 1225–1245.CrossRefGoogle Scholar
  82. Pliszka, S. (2007). Practice parameter for the assessment and treatment of children and adolescents with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 46, 894–921.PubMedCrossRefGoogle Scholar
  83. Prehn-Kristensen, A., Krauel, K., Hinrichs, H., Fischer, J., Malecki, U., Schuetze, H., Wolff, S., Jansen, O., Duezel, E., & Baving, L. (2011). Methylphenidate does not improve interference control during a working memory task in young patients with attention-deficit hyperactivity disorder. Brain Research, 1388, 56–68.PubMedCrossRefGoogle Scholar
  84. Qi, X. L., & Constantinidis, C. (2013). Neural changes after training to perform cognitive tasks. Behavioural Brain Research, 241, 235–243.PubMedCrossRefGoogle Scholar
  85. Rabipour, S., & Raz, A. (2012). Training the brain: fact and fad in cognitive and behavioral remediation. Brain and Cognition, 79, 159–179.PubMedCrossRefGoogle Scholar
  86. Raiker, J. S., Rapport, M. D., Kofler, M. J., & Sarver, D. E. (2012). Objectively-measured impulsivity and attention-deficit/hyperactivity disorder (ADHD): testing competing predictions from the working memory and behavioral inhibition models of ADHD. Journal of Abnormal Child Psychology, 40, 699–713.PubMedCrossRefGoogle Scholar
  87. Rapport, M. D., Alderson, R. M., Kofler, M. J., Sarver, D. E., Bolden, J., & Sims, V. (2008). Working memory deficits in boys with attention-deficit/hyperactivity disorder (ADHD): the contribution of central executive and subsystem processes. Journal of Abnormal Child Psychology, 36, 825–837.PubMedCrossRefGoogle Scholar
  88. Rapport, M. D., Bolden, J., Kofler, M. J., Sarver, D. E., Raiker, J. S., & Alderson, R. M. (2009). Hyperactivity in boys with attention-deficit/hyperactivity disorder (ADHD): a ubiquitous core symptom or manifestation of working memory deficits? Journal of Abnormal Child Psychology, 37, 521–534.PubMedCrossRefGoogle Scholar
  89. Rapport, M. D., Orban, S. A., Kofler, M. J., & Friedman, L. M. (2013). Do programs designed to train working memory, other executive functions, and attention benefit children with ADHD? A meta-analytic review of cognitive, academic, and behavioral outcomes. Clinical Psychology Review, 33, 1237–1252.PubMedCrossRefGoogle Scholar
  90. Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., Kane, M. J., & Engle, R. W. (2013). No evidence of intelligence improvement after working memory training: a randomized, placebo-controlled study. Journal of Experimental Psychology. General, 142, 359–379.PubMedCrossRefGoogle Scholar
  91. Rhodes, S. M., Coghill, D. R., & Matthews, K. (2006). Acute neuropsychological effects of methylphenidate in stimulant drug-naive boys with ADHD II–broader executive and non-executive domains. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 47, 1184–1194.PubMedCrossRefGoogle Scholar
  92. Risser, M. G., & Bowers, T. G. (1993). Cognitive and neuropsychological characteristics of attention deficit hyperactivity disorder children receiving stimulant medications. Perceptual and Motor Skills, 77, 1023–1031.PubMedCrossRefGoogle Scholar
  93. Rottschy, C., Langner, R., Dogan, I., Reetz, K., Laird, A. R., Schulz, J. B., Fox, P. T., & Eickhoff, S. B. (2012). Modelling neural correlates of working memory: a coordinate-based meta-analysis. NeuroImage, 60, 830–846.PubMedCrossRefGoogle Scholar
  94. Rubia, K., Alegria, A. A., Cubillo, A. I., Smith, A. B., Brammer, M. J., & Radua, J. (2014). Effects of stimulants on brain function in attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Biological Psychiatry, 76, 616–628.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Rutledge, K. J., van den Bos, W., McClure, S. M., & Schweitzer, J. B. (2012). Training cognition in ADHD: current findings, borrowed concepts, and future directions. Neurotherapeutics, 9, 542–558.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Schweren, L. J., de Zeeuw, P., & Durston, S. (2013). MR imaging of the effects of methylphenidate on brain structure and function in attention-deficit/hyperactivity disorder. European Neuropsychopharmacology, 23, 1151–1164.PubMedCrossRefGoogle Scholar
  97. Seghier, M. L. (2013). The angular gyrus: multiple functions and multiple subdivisions. The Neuroscientist, 19, 43–61.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Shah, P. J., Buschkuehl, M., Jaeggi, S., & Jonides, J. (2012). Cognitive training for ADHD: the importance of individual differences. Journal of Applied Research in Memory and Cognition, 1, 204–205.CrossRefGoogle Scholar
  99. Shallice, T. (1994). Multiple levels of control processes. In C. Umilta, & M. Moscovitch (Eds.), Conscious and nonconscious information processing (pp. 395–420). Cambridge, MA: Attention and Performance. MIT Press.Google Scholar
  100. Shallice, T., 2004. The fractionation of supervisory control. In: Gazzaniga, M.S. (Ed.), The cognitive neurosciences, pp. 943–956.Google Scholar
  101. Sheridan, M. A., Hinshaw, S., & D'Esposito, M. (2007). Efficiency of the prefrontal cortex during working memory in attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 46, 1357–1366.PubMedCrossRefGoogle Scholar
  102. Shipstead, Z., Hicks, K. L., & Engle, R. W. (2012a). Cogmed working memory training: does the evidence support the claims? Journal of Applied Research in Memory and Cognition, 1, 185–193.CrossRefGoogle Scholar
  103. Shipstead, Z., Redick, T. S., & Engle, R. W. (2012b). Is working memory training effective? Psychological Bulletin, 138, 628–654.PubMedCrossRefGoogle Scholar
  104. Sonuga-Barke, E. J., Brandeis, D., Cortese, S., Daley, D., Ferrin, M., Holtmann, M., Stevenson, J., Danckaerts, M., van der Oord, S., Dopfner, M., Dittmann, R. W., Simonoff, E., Zuddas, A., Banaschewski, T., Buitelaar, J., Coghill, D., Hollis, C., Konofal, E., Lecendreux, M., Wong, I. C., Sergeant, J., & European, A. G. G. (2013). Nonpharmacological interventions for ADHD: systematic review and meta-analyses of randomized controlled trials of dietary and psychological treatments. The American Journal of Psychiatry, 170, 275–289.PubMedCrossRefGoogle Scholar
  105. Stuss, D. T. (2006). Frontal lobes and attention: processes and networks, fractionation and integration. Journal of the International Neuropsychological Society, 12, 261–271.PubMedCrossRefGoogle Scholar
  106. Stuss, D. T., & Alexander, M. P. (2000). Executive functions and the frontal lobes: a conceptual view. Psychological Research, 63, 289–298.PubMedCrossRefGoogle Scholar
  107. Takeuchi, H., Taki, Y., & Kawashima, R. (2010). Effects of working memory training on cognitive functions and neural systems. Reviews in the Neurosciences, 21, 427–449.PubMedCrossRefGoogle Scholar
  108. Toplak, M. E., Connors, L., Shuster, J., Knezevic, B., & Parks, S. (2008). Review of cognitive, cognitive-behavioral, and neural-based interventions for attention-deficit/hyperactivity disorder (ADHD). Clinical Psychology Review, 28, 801–823.PubMedCrossRefGoogle Scholar
  109. Unsworth, N., & Engle, R. W. (2007a). The nature of individual differences in working memory capacity: active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114, 104–132.PubMedCrossRefGoogle Scholar
  110. Unsworth, N., & Engle, R. W. (2007b). On the division of short-term and working memory: an examination of simple and complex span and their relation to higher order abilities. Psychological Bulletin, 133, 1038–1066.PubMedCrossRefGoogle Scholar
  111. Valera, E. M., Faraone, S. V., Biederman, J., Poldrack, R. A., & Seidman, L. J. (2005). Functional neuroanatomy of working memory in adults with attention-deficit/hyperactivity disorder. Biological Psychiatry, 57, 439–447.PubMedCrossRefGoogle Scholar
  112. Vance, A., Silk, T. J., Casey, M., Rinehart, N. J., Bradshaw, J. L., Bellgrove, M. A., & Cunnington, R. (2007). Right parietal dysfunction in children with attention deficit hyperactivity disorder, combined type: a functional MRI study. Molecular Psychiatry, 12(826–832), 793.CrossRefGoogle Scholar
  113. Wager, T. D., Atlas, L. Y., Leotti, L. A., & Rilling, J. K. (2011). Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience. The Journal of Neuroscience, 31, 439–452.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: a meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3, 255–274.CrossRefGoogle Scholar
  115. Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biological Psychiatry, 57, 1336–1346.PubMedCrossRefGoogle Scholar
  116. Willcutt, E. G., Nigg, J. T., Pennington, B. F., Solanto, M. V., Rohde, L. A., Tannock, R., Loo, S. K., Carlson, C. L., McBurnett, K., & Lahey, B. B. (2012). Validity of DSM-IV attention deficit/hyperactivity disorder symptom dimensions and subtypes. Journal of Abnormal Psychology, 121, 991–1010.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Willis, S. L., & Schaie, K. W. (2009). Cognitive training and plasticity: theoretical perspective and methodological consequences. Restorative Neurology and Neuroscience, 27, 375–389.PubMedPubMedCentralGoogle Scholar
  118. Wolf, R. C., Plichta, M. M., Sambataro, F., Fallgatter, A. J., Jacob, C., Lesch, K. P., Herrmann, M. J., Schonfeldt-Lecuona, C., Connemann, B. J., Gron, G., & Vasic, N. (2009). Regional brain activation changes and abnormal functional connectivity of the ventrolateral prefrontal cortex during working memory processing in adults with attention-deficit/hyperactivity disorder. Human Brain Mapping, 30, 2252–2266.PubMedCrossRefGoogle Scholar
  119. Wong, C. G., & Stevens, M. C. (2012). The effects of stimulant medication on working memory functional connectivity in attention-deficit/hyperactivity disorder. Biological Psychiatry, 71, 458–466.PubMedCrossRefGoogle Scholar
  120. Workgroup, R. D. C. (2010). Working Memory: Workshop Proceedings. In N. I. o. M. Health (Ed.), (Ed ed., ). Bethesda, MD.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Michael C. Stevens
    • 1
    • 2
  • Alexandra Gaynor
    • 1
  • Katie L. Bessette
    • 1
  • Godfrey D. Pearlson
    • 1
    • 2
  1. 1.Olin Neuropsychiatry Research Center, The Institute of Living / Hartford Hospital, 200 Retreat Avenue, Whitehall BuildingHartfordUSA
  2. 2.Department of PsychiatryYale University School of MedicineNew HavenUSA

Personalised recommendations