Brain Imaging and Behavior

, Volume 9, Issue 1, pp 128–140 | Cite as

ERBB4 polymorphism and family history of psychiatric disorders on age-related cortical changes in healthy children

  • Vanessa DouetEmail author
  • Linda Chang
  • Kristin Lee
  • Thomas Ernst
  • For the Pediatric Imaging, Neurocognition, and Genetics (PING) Consortium
SI: Developing Brain


Genetic variations in ERBB4 were associated with increased susceptibility for schizophrenia (SCZ) and bipolar disorders (BPD). Structural imaging studies showed cortical abnormalities in adolescents and adults with SCZ or BPD. However, less is known about subclinical cortical changes or the influence of ERBB4 on cortical development. 971 healthy children (ages 3–20 years old; 462 girls and 509 boys) were genotyped for the ERBB4-rs7598440 variants, had structural MRI, and cognitive evaluation (NIH Toolbox ®). We investigated the effects of ERBB4 variants and family history of SCZ and/or BPD (FH) on cortical measures and cognitive performances across ages 3–20 years using a general additive model. Variations in ERBB4 and FH impact differentially the age-related cortical changes in regions often affected by SCZ and BPD. The ERBB4-TT-risk genotype children with no FH had subtle cortical changes across the age span, primarily located in the left temporal lobe and superior parietal cortex. In contrast, the TT-risk genotype children with FH had more pronounced age-related changes, mainly in the frontal lobes compared to the non-risk genotype children. Interactive effects of age, FH and ERBB4 variations were also found on episodic memory and working memory, which are often impaired in SCZ and BPD. Healthy children carrying the risk-genotype in ERBB4 and/or with FH had cortical measures resembling those reported in SCZ or BPD. These subclinical cortical variations may provide early indicators for increased risk of psychiatric disorders and improve our understanding of the effect of the NRG1–ERBB4 pathway on brain development.


ERBB4 Brain development Family history of psychiatric disorders Surface-based morphometry Neuropsychological tests 



We thank all of the children and their families that have participated in our study, the physicians who referred some of the participants and all the clinical and technical staff from the research teams in the PING consortium. Data collection and sharing for this project was performed by the Pediatric Imaging, Neurocognition, and Genetics (PING) consortium. PING is co-funded by the National Institute on Drug Abuse and the Eunice Kennedy Shriver National Institute of Child Health & Human Development (RC2DA029475). PING data are disseminated by the PING Coordinating Center at the Center for Human Development, University of California, San Diego.

Additional Grant Support from the National Institutes of Health: 2 K24-DA016170, U54NS56883, G12-MD007601.

Financial disclosures

Vanessa Douet, Linda Chang, Kristin Lee, and Thomas Ernst declare no conflicts of interest.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Supplementary material

11682_2015_9363_MOESM1_ESM.pdf (32 kb)
ESM 1 (PDF 32 kb)


  1. Agim, Z. S., Esendal, M., Briollais, L., Uyan, O., Meschian, M., Martinez, L. A., & Ozcelik, H. (2013). Discovery, validation and characterization of Erbb4 and Nrg1 haplotypes using data from three genome-wide association studies of schizophrenia. [research support, N.I.H., extramural. Research support, Non-U.S. Gov’t]. PLoS One, 8(1), e53042. doi: 10.1371/journal.pone.0053042.CrossRefPubMedCentralPubMedGoogle Scholar
  2. Akshoomoff, N., Newman, E., Thompson, W.K., McCabe, C., Bloss, C.S., Amaral C. L., Casey, D.G., Ernst, B.J., T.M., Frazier, J.A., Gruen, J. R., Kaufmann, W.E., Kenet, T., Kennedy, D.N., Libiger, O., M., S., Murray, S.S., Sowell, E.R., Schork, N., Dale, A.M., Jernigan, T. L. (2014). The NIH Toolbox Cognition Battery: Results from a large normative Developmental Sample (PING). Neuropsychology, 28(1), 1–10. doi: 10.1037/neu0000001.
  3. Aickin M, Gensler H. (1996). Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. American Journal of Public Health, 86, 726–728.Google Scholar
  4. Arnone, D., Cavanagh, J., Gerber, D., Lawrie, S. M., Ebmeier, K. P., & McIntosh, A. M. (2009). Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis. [meta-analysis research support, Non-U.S. Gov’t review]. The British Journal of Psychiatry, 195(3), 194–201. doi: 10.1192/bjp.bp.108.059717.CrossRefPubMedGoogle Scholar
  5. Bae, J. S., Pasaje, C. F., Park, B. L., Cheong, H. S., Kim, J. H., Kim, J. Y., & Woo, S. I. (2012). Genetic association analysis of ERBB4 polymorphisms with the risk of schizophrenia and SPEM abnormality in a Korean population. [research support, Non-U.S. Gov’t]. Brain Research, 1466, 146–151. doi: 10.1016/j.brainres.2012.05.029.CrossRefPubMedGoogle Scholar
  6. Bakken, T. E., Roddey, J. C., Djurovic, S., Akshoomoff, N., Amaral, D. G., Bloss, C. S., & Carlson, H. (2012). Association of common genetic variants in GPCPD1 with scaling of visual cortical surface area in humans. [research support, N.I.H., extramural research support, Non-U.S. Gov’t research support, U.S. Gov’t, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 109(10), 3985–3990. doi: 10.1073/pnas.1105829109.CrossRefPubMedCentralPubMedGoogle Scholar
  7. Bartsch, H., Thompson, W. K., Jernigan, T. L., & Dale, A. M. (2014). A web-portal for interactive data exploration, visualization, and hypothesis testing. Frontiers in Neuroinformatics, 8, 25. doi: 10.3389/fninf.2014.00025.CrossRefPubMedCentralPubMedGoogle Scholar
  8. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing (1995th ed.). Hoboken: Wiley.Google Scholar
  9. Beyer, J. L., Young, R., Kuchibhatla, M., & Krishnan, K. R. (2009). Hyperintense MRI lesions in bipolar disorder: a meta-analysis and review. [meta-analysis research support, N.I.H., extramural review]. International Review of Psychiatry, 21(4), 394–409. doi: 10.1080/09540260902962198.CrossRefPubMedCentralPubMedGoogle Scholar
  10. Bora, E., Lin, A., Wood, S. J., Yung, A. R., McGorry, P. D., & Pantelis, C. (2014). Cognitive deficits in youth with familial and clinical high risk to psychosis: a systematic review and meta-analysis. [Research Support, Non-U.S. Gov’t]. Acta Psychiatrica Scandinavica, 130(1), 1–15. doi: 10.1111/acps.12261.CrossRefPubMedGoogle Scholar
  11. Brown, T. T., Kuperman, J. M., Chung, Y., Erhart, M., McCabe, C., Hagler, D. J., Jr., & Dale, A. M. (2012). Neuroanatomical assessment of biological maturity. [research support, N.I.H., extramural]. Current Biology, 22(18), 1693–1698. doi: 10.1016/j.cub.2012.07.002.CrossRefPubMedCentralPubMedGoogle Scholar
  12. Buka, S. L., & Fan, A. P. (1999). Association of prenatal and perinatal complications with subsequent bipolar disorder and schizophrenia. [research support, Non-U.S. Gov’t research support, U.S. Gov’t, P.H.S. review]. Schizophrenia Research, 39(2), 113–119. discussion 160–111.CrossRefPubMedGoogle Scholar
  13. Buonanno, A. (2010). The neuregulin signaling pathway and schizophrenia: from genes to synapses and neural circuits. [research support, N.I.H., intramural review]. Brain Research Bulletin, 83(3–4), 122–131. doi: 10.1016/j.brainresbull.2010.07.012.CrossRefPubMedCentralPubMedGoogle Scholar
  14. Buxbaum, J. D., Georgieva, L., Young, J. J., Plescia, C., Kajiwara, Y., Jiang, Y., & O’Donovan, M. C. (2008). Molecular dissection of NRG1-ERBB4 signaling implicates PTPRZ1 as a potential schizophrenia susceptibility gene. [research support, N.I.H., extramural research support, Non-U.S. Gov’t]. Molecular Psychiatry, 13(2), 162–172. doi: 10.1038/ Scholar
  15. Cardno, A. G., & Gottesman, I. I. (2000). Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. [review]. American Journal of Medical Genetics, 97(1), 12–17.CrossRefPubMedGoogle Scholar
  16. Chen, S., Velardez, M. O., Warot, X., Yu, Z. X., Miller, S. J., Cros, D., & Corfas, G. (2006). Neuregulin 1-erbB signaling is necessary for normal myelination and sensory function. [research support, N.I.H., extramural]. The Journal of Neuroscience, 26(12), 3079–3086. doi: 10.1523/JNEUROSCI. 3785-05.2006.CrossRefPubMedGoogle Scholar
  17. Chen, P., Chen, J., Huang, K., Ji, W., Wang, T., Li, T., & Shi, Y. (2012). Analysis of association between common SNPs in ErbB4 and bipolar affective disorder, major depressive disorder and schizophrenia in the Han Chinese population. [comparative study research support, Non-U.S. Gov’t]. Progress in Neuropsychopharmacology and Biological Psychiatry, 36(1), 17–21. doi: 10.1016/j.pnpbp.2011.09.011.CrossRefGoogle Scholar
  18. Chong, V. Z., Thompson, M., Beltaifa, S., Webster, M. J., Law, A. J., & Weickert, C. S. (2008). Elevated neuregulin-1 and ErbB4 protein in the prefrontal cortex of schizophrenic patients. [comparative study research support, Non-U.S. Gov’t]. Schizophrenia Research, 100(1–3), 270–280. doi: 10.1016/j.schres.2007.12.474.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Diwadkar, V. A., Pruitt, P., Zhang, A., Radwan, J., Keshavan, M. S., Murphy, E., & Zajac-Benitez, C. (2012a). The neural correlates of performance in adolescents at risk for schizophrenia: inefficiently increased cortico-striatal responses measured with fMRI. [research support, N.I.H., extramural research support, Non-U.S. Gov’t]. Journal of Psychiatric Research, 46(1), 12–21. doi: 10.1016/j.jpsychires.2011.09.016.CrossRefPubMedGoogle Scholar
  20. Diwadkar, V. A., Wadehra, S., Pruitt, P., Keshavan, M. S., Rajan, U., Zajac-Benitez, C., & Eickhoff, S. B. (2012b). Disordered corticolimbic interactions during affective processing in children and adolescents at risk for schizophrenia revealed by functional magnetic resonance imaging and dynamic causal modeling. [research support, N.I.H., extramural]. Archives of General Psychiatry, 69(3), 231–242. doi: 10.1001/archgenpsychiatry.2011.1349.CrossRefPubMedGoogle Scholar
  21. Douet, V., Chang, L., Pritchett, A., Lee, K., Keating, B., Bartsch, H., & Ernst, T. (2014). Schizophrenia-risk variant rs6994992 in the neuregulin-1 gene on brain developmental trajectories in typically developing children. [research support, N.I.H., extramural]. Translational Psychiatry, 4, e392. doi: 10.1038/tp.2014.41.CrossRefPubMedCentralPubMedGoogle Scholar
  22. Eisenberg, D. P., & Berman, K. F. (2010). Executive function, neural circuitry, and genetic mechanisms in schizophrenia. [research support, N.I.H., intramural review]. Neuropsychopharmacology, 35(1), 258–277. doi: 10.1038/npp.2009.111.CrossRefPubMedCentralPubMedGoogle Scholar
  23. Ellison-Wright, I., Glahn, D. C., Laird, A. R., Thelen, S. M., & Bullmore, E. (2008). The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. [meta-analysis research support, N.I.H., extramural]. The American Journal of Psychiatry, 165(8), 1015–1023. doi: 10.1176/appi.ajp.2008.07101562.CrossRefPubMedCentralPubMedGoogle Scholar
  24. Fatouros-Bergman, H., Cervenka, S., Flyckt, L., Edman, G., & Farde, L. (2014). Meta-analysis of cognitive performance in drug-naive patients with schizophrenia. Schizophrenia Research, 158(1–3), 156–162. doi: 10.1016/j.schres.2014.06.034.CrossRefPubMedGoogle Scholar
  25. Fjell, A. M., Walhovd, K. B., Brown, T. T., Kuperman, J. M., Chung, Y., Hagler, D. J., Jr., & Genetics, S. (2012). Multimodal imaging of the self-regulating developing brain. [multicenter study research support, N.I.H., extramural research support, Non-U.S. Gov’t]. Proceedings of the National Academy of Sciences of the United States of America, 109(48), 19620–19625. doi: 10.1073/pnas.1208243109.CrossRefPubMedCentralPubMedGoogle Scholar
  26. Fornito, A., Yucel, M., & Pantelis, C. (2009a). Reconciling neuroimaging and neuropathological findings in schizophrenia and bipolar disorder. [research support, Non-U.S. Gov’t review]. Current Opinion in Psychiatry, 22(3), 312–319. doi: 10.1097/YCO.0b013e32832a1353.CrossRefPubMedGoogle Scholar
  27. Fornito, A., Yucel, M., Patti, J., Wood, S. J., & Pantelis, C. (2009b). Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. [research support, Non-U.S. Gov’t]. Schizophrenia Research, 108(1–3), 104–113. doi: 10.1016/j.schres.2008.12.011.CrossRefPubMedGoogle Scholar
  28. Friedman, L., Findling, R. L., Kenny, J. T., Swales, T. P., Stuve, T. A., Jesberger, J. A., & Schulz, S. C. (1999). An MRI study of adolescent patients with either schizophrenia or bipolar disorder as compared to healthy control subjects. [comparative study research support, Non-U.S. Gov’t]. Biological Psychiatry, 46(1), 78–88.CrossRefPubMedGoogle Scholar
  29. Glahn, D. C., Laird, A. R., Ellison-Wright, I., Thelen, S. M., Robinson, J. L., Lancaster, J. L., & Fox, P. T. (2008). Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. [research support, N.I.H., extramural]. Biological Psychiatry, 64(9), 774–781. doi: 10.1016/j.biopsych.2008.03.031.CrossRefPubMedGoogle Scholar
  30. Goes, F. S., Rongione, M., Chen, Y. C., Karchin, R., Elhaik, E., Bipolar Genome, S., & Potash, J. B. (2011). Exonic DNA sequencing of ERBB4 in bipolar disorder. [research support, N.I.H., extramural]. PLoS One, 6(5), e20242. doi: 10.1371/journal.pone.0020242.CrossRefPubMedCentralPubMedGoogle Scholar
  31. Gogtay, N., & Rapoport, J. L. (2008). Childhood-onset schizophrenia: insights from neuroimaging studies. [review]. Journal of the American Academy of Child and Adolescent Psychiatry, 47(10), 1120–1124. doi: 10.1097/CHI.0b013e31817eed7a.CrossRefPubMedGoogle Scholar
  32. Goldman, A. L., Pezawas, L., Mattay, V. S., Fischl, B., Verchinski, B. A., Chen, Q., & Meyer-Lindenberg, A. (2009). Widespread reductions of cortical thickness in schizophrenia and spectrum disorders and evidence of heritability. [research support, N.I.H., extramural research support, N.I.H., intramural research support, Non-U.S. Gov’t]. Archives of General Psychiatry, 66(5), 467–477. doi: 10.1001/archgenpsychiatry.2009.24.CrossRefPubMedCentralPubMedGoogle Scholar
  33. Greenwood, T. A., Light, G. A., Swerdlow, N. R., Radant, A. D., & Braff, D. L. (2012). Association analysis of 94 candidate genes and schizophrenia-related endophenotypes. [research support, N.I.H., extramural research support, Non-U.S. Gov’t]. PLoS One, 7(1), e29630. doi: 10.1371/journal.pone.0029630.CrossRefPubMedCentralPubMedGoogle Scholar
  34. Gutierrez-Galve, L., Chu, E. M., Leeson, V. C., Price, G., Barnes, T. R., Joyce, E. M., & Ron, M. A. (2015). A longitudinal study of cortical changes and their cognitive correlates in patients followed up after first-episode psychosis. Psychological Medicine, 45(1), 205–216. doi:  10.1017/S0033291714001433.
  35. Ha, T. (1986). General additive model (Vol. 1).Google Scholar
  36. Harrison, P. J., & Weinberger, D. R. (2005). Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. [research support, Non-U.S. Gov’t review]. Molecular Psychiatry, 10(1), 40–68. doi: 10.1038/ image 45.CrossRefPubMedGoogle Scholar
  37. Hatzimanolis, A., McGrath, J. A., Wang, R., Li, T., Wong, P. C., Nestadt, G., & Avramopoulos, D. (2013). Multiple variants aggregate in the neuregulin signaling pathway in a subset of schizophrenia patients. [research support, N.I.H., extramural research support, Non-U.S. Gov’t]. Translational Psychiatry, 3, e264. doi: 10.1038/tp.2013.33.CrossRefPubMedCentralPubMedGoogle Scholar
  38. Honea, R., Crow, T. J., Passingham, D., & Mackay, C. E. (2005). Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. [comparative study meta-analysis research support, Non-U.S. Gov’t review]. The American Journal of Psychiatry, 162(12), 2233–2245. doi: 10.1176/appi.ajp.162.12.2233.CrossRefPubMedGoogle Scholar
  39. Jacobsen, L. K., Giedd, J. N., Castellanos, F. X., Vaituzis, A. C., Hamburger, S. D., Kumra, S., & Rapoport, J. L. (1998). Progressive reduction of temporal lobe structures in childhood-onset schizophrenia. [comparative study]. The American Journal of Psychiatry, 155(5), 678–685.CrossRefPubMedGoogle Scholar
  40. Janssen, J., Aleman-Gomez, Y., Schnack, H., Balaban, E., Pina-Camacho, L., Alfaro-Almagro, F., & Desco, M. (2014). Cortical morphology of adolescents with bipolar disorder and with schizophrenia. Schizophrenia Research, 158(1–3), 91–99. doi: 10.1016/j.schres.2014.06.040.CrossRefPubMedGoogle Scholar
  41. Jeppesen, P., Larsen, J. T., Clemmensen, L., Munkholm, A., Rimvall, M. K., Rask, C. U., & Skovgaard, A. M. (2014). The CCC2000 birth cohort study of register-based family history of mental disorders and psychotic experiences in offspring. Schizophrenia Bulletin. doi: 10.1093/schbul/sbu167.Google Scholar
  42. Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. [research support, U.S. Gov’t, Non-P.H.S. Research support, U.S. Gov’t, P.H.S. review]. Psychonomic Bulletin and Review, 9(4), 637–671.CrossRefPubMedGoogle Scholar
  43. Konrad, A., & Winterer, G. (2008). Disturbed structural connectivity in schizophrenia primary factor in pathology or epiphenomenon? [review]. Schizophrenia Bulletin, 34(1), 72–92. doi: 10.1093/schbul/sbm034.CrossRefPubMedCentralPubMedGoogle Scholar
  44. Konrad, A., Vucurevic, G., Musso, F., Stoeter, P., Dahmen, N., & Winterer, G. (2009). ErbB4 genotype predicts left frontotemporal structural connectivity in human brain. Neuropsychopharmacology, 34(3), 641–650. doi: 10.1038/npp.2008.112.CrossRefPubMedGoogle Scholar
  45. Kraemer, H. C., Yesavage, J. A., Taylor, J. L., & Kupfer, D. (2000). How can we learn about developmental processes from cross-sectional studies, or can we? [research support, Non-U.S. Gov’t research support, U.S. Gov’t, Non-P.H.S. Research support, U.S. Gov’t, P.H.S.]. The American Journal of Psychiatry, 157(2), 163–171.CrossRefPubMedGoogle Scholar
  46. Kuperberg, G. R., Broome, M. R., McGuire, P. K., David, A. S., Eddy, M., Ozawa, F., & Fischl, B. (2003). Regionally localized thinning of the cerebral cortex in schizophrenia. [comparative study research support, Non-U.S. Gov’t research support, U.S. Gov’t, P.H.S.]. Archives of General Psychiatry, 60(9), 878–888. doi: 10.1001/archpsyc.60.9.878.CrossRefPubMedGoogle Scholar
  47. Law, A. J., Lipska, B. K., Weickert, C. S., Hyde, T. M., Straub, R. E., Hashimoto, R., & Weinberger, D. R. (2006). Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5′ SNPs associated with the disease. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6747–6752. doi: 10.1073/pnas.0602002103.CrossRefPubMedCentralPubMedGoogle Scholar
  48. Law, A. J., Kleinman, J. E., Weinberger, D. R., & Weickert, C. S. (2007). Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. [comparative study research support, N.I.H., intramural]. Human Molecular Genetics, 16(2), 129–141. doi: 10.1093/hmg/ddl449.CrossRefPubMedGoogle Scholar
  49. Lewis, D. A., & Levitt, P. (2002). Schizophrenia as a disorder of neurodevelopment. [research support, U.S. Gov’t, P.H.S. review]. Annual Review of Neuroscience, 25, 409–432. doi: 10.1146/annurev.neuro.25.112701.142754.CrossRefPubMedGoogle Scholar
  50. Lu, C. L., Wang, Y. C., Chen, J. Y., Lai, I. C., & Liou, Y. J. (2010). Support for the involvement of the ERBB4 gene in schizophrenia: a genetic association analysis. [research support, Non-U.S. Gov’t]. Neuroscience Letters, 481(2), 120–125. doi: 10.1016/j.neulet.2010.06.067.CrossRefPubMedGoogle Scholar
  51. Luykx, J. J., Vinkers, C. H., Bakker, S. C., Visser, W. F., van Boxmeer, L., Strengman, E., & Ophoff, R. A. (2012). A common variant in ERBB4 regulates GABA concentrations in human cerebrospinal fluid. [multicenter study]. Neuropsychopharmacology, 37(9), 2088–2092. doi: 10.1038/npp.2012.57.CrossRefPubMedCentralPubMedGoogle Scholar
  52. Maier, W., Zobel, A., & Wagner, M. (2006). Schizophrenia and bipolar disorder: differences and overlaps. [comparative study review]. Current Opinion in Psychiatry, 19(2), 165–170. doi: 10.1097/01.yco.0000214342.52249.82.CrossRefPubMedGoogle Scholar
  53. Marenco, S., Geramita, M., van der Veen, J. W., Barnett, A. S., Kolachana, B., Shen, J., & Law, A. J. (2011). Genetic association of ErbB4 and human cortical GABA levels in vivo. [comparative study research support, N.I.H., intramural]. The Journal of Neuroscience, 31(32), 11628–11632. doi: 10.1523/JNEUROSCI. 1529-11.2011.CrossRefPubMedCentralPubMedGoogle Scholar
  54. Marshal, M. P., Friedman, M. S., Stall, R., King, K. M., Miles, J., Gold, M. A., & Morse, J. Q. (2008). Sexual orientation and adolescent substance use: a meta-analysis and methodological review. [meta-analysis research support, N.I.H., extramural review]. Addiction, 103(4), 546–556. doi: 10.1111/j.1360-0443.2008.02149.x.CrossRefPubMedCentralPubMedGoogle Scholar
  55. Mattai, A. A., Weisinger, B., Greenstein, D., Stidd, R., Clasen, L., Miller, R., & Gogtay, N. (2011). Normalization of cortical gray matter deficits in nonpsychotic siblings of patients with childhood-onset schizophrenia. Journal of the American Academy of Child and Adolescent Psychiatry, 50(7), 697–704. doi: 10.1016/j.jaac.2011.03.016.CrossRefPubMedCentralPubMedGoogle Scholar
  56. McGue, M., & Gottesman, I. I. (1991). The genetic epidemiology of schizophrenia and the design of linkage studies. [review]. European Archives of Psychiatry and Clinical Neuroscience, 240(3), 174–181.CrossRefPubMedGoogle Scholar
  57. Mei, L., & Xiong, W. C. (2008). Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. [research support, N.I.H., extramural research support, Non-U.S. Gov’t review]. Nature Review Neuroscience, 9(6), 437–452. doi: 10.1038/nrn2392.CrossRefGoogle Scholar
  58. Metzler-Baddeley, C., Jones, D. K., Belaroussi, B., Aggleton, J. P., & O’Sullivan, M. J. (2011). Frontotemporal connections in episodic memory and aging: a diffusion MRI tractography study. [research support, Non-U.S. Gov’t]. The Journal of Neuroscience, 31(37), 13236–13245. doi: 10.1523/JNEUROSCI. 2317-11.2011.CrossRefPubMedGoogle Scholar
  59. Nicodemus, K. K., Luna, A., Vakkalanka, R., Goldberg, T., Egan, M., Straub, R. E., & Weinberger, D. R. (2006). Further evidence for association between ErbB4 and schizophrenia and influence on cognitive intermediate phenotypes in healthy controls. [clinical trial comparative study letter]. Molecular Psychiatry, 11(12), 1062–1065. doi: 10.1038/ Scholar
  60. Nicodemus, K. K., Law, A. J., Radulescu, E., Luna, A., Kolachana, B., Vakkalanka, R., & Weinberger, D. R. (2010). Biological validation of increased schizophrenia risk with NRG1, ERBB4, and AKT1 epistasis via functional neuroimaging in healthy controls. [research support, N.I.H., intramural]. Archives of General Psychiatry, 67(10), 991–1001. doi: 10.1001/archgenpsychiatry.2010.117.CrossRefPubMedCentralPubMedGoogle Scholar
  61. Norton, N., Moskvina, V., Morris, D. W., Bray, N. J., Zammit, S., Williams, N. M., & O’Donovan, M. C. (2006). Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. [research support, N.I.H., extramural research support, Non-U.S. Gov’t]. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 141B(1), 96–101. doi: 10.1002/ajmg.b.30236.CrossRefGoogle Scholar
  62. Oishi, K., Faria, A., van Zijl, P., & Mori, S. (2010). MRI atlas of human white matter (2nd ed.). Amsterdam: Elsevier. 09 Nov 2010 ed.Google Scholar
  63. Rapoport, J. L., Addington, A. M., Frangou, S., & Psych, M. R. (2005). The neurodevelopmental model of schizophrenia: update 2005. [review]. Molecular Psychiatry, 10(5), 434–449. doi: 10.1038/ Scholar
  64. Rimol, L. M., Hartberg, C. B., Nesvag, R., Fennema-Notestine, C., Hagler, D. J., Jr., Pung, C. J., & Agartz, I. (2010). Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. [research support, Non-U.S. Gov’t]. Biological Psychiatry, 68(1), 41–50. doi: 10.1016/j.biopsych.2010.03.036.CrossRefPubMedGoogle Scholar
  65. Rimol, L. M., Nesvag, R., Hagler, D. J., Jr., Bergmann, O., Fennema-Notestine, C., Hartberg, C. B., & Dale, A. M. (2012). Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. [research support, Non-U.S. Gov’t]. Biological Psychiatry, 71(6), 552–560. doi: 10.1016/j.biopsych.2011.11.026.CrossRefPubMedGoogle Scholar
  66. Sankararaman, S., Sridhar, S., Kimmel, G., & Halperin, E. (2008). Estimating local ancestry in admixed populations. [comparative study]. The American Journal of Human Genetics, 82(2), 290–303. doi: 10.1016/j.ajhg.2007.09.022.CrossRefGoogle Scholar
  67. Schaefer, J., Giangrande, E., Weinberger, D. R., & Dickinson, D. (2013). The global cognitive impairment in schizophrenia: consistent over decades and around the world. [research support, N.I.H., intramural]. Schizophrenia Research, 150(1), 42–50. doi: 10.1016/j.schres.2013.07.009.CrossRefPubMedCentralPubMedGoogle Scholar
  68. Shenton, M. E., Dickey, C. C., Frumin, M., & McCarley, R. W. (2001). A review of MRI findings in schizophrenia. [research support, Non-U.S. Gov’t research support, U.S. Gov’t, Non-P.H.S. Research support, U.S. Gov’t, P.H.S. review]. Schizophrenia Research, 49(1–2), 1–52.CrossRefPubMedCentralPubMedGoogle Scholar
  69. Shiota, S., Tochigi, M., Shimada, H., Ohashi, J., Kasai, K., Kato, N., & Sasaki, T. (2008). Association and interaction analyses of NRG1 and ERBB4 genes with schizophrenia in a Japanese population. [comparative study]. Journal of Human Genetics, 53(10), 929–935. doi: 10.1007/s10038-008-0332-9.CrossRefPubMedGoogle Scholar
  70. Silberberg, G., Darvasi, A., Pinkas-Kramarski, R., & Navon, R. (2006). The involvement of ErbB4 with schizophrenia: association and expression studies. [comparative study research support, Non-U.S. Gov’t]. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 141B(2), 142–148. doi: 10.1002/ajmg.b.30275.CrossRefGoogle Scholar
  71. Sowell, E. R., Trauner, D. A., Gamst, A., & Jernigan, T. L. (2002). Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. [research support, U.S. Gov’t, Non-P.H.S. Research support, U.S. Gov’t, P.H.S.]. Developmental Medicine and Child Neurology, 44(1), 4–16.CrossRefPubMedGoogle Scholar
  72. Stefanis, N. C., Hatzimanolis, A., Smyrnis, N., Avramopoulos, D., Evdokimidis, I., van Os, J., & Weinberger, D. R. (2013). Schizophrenia candidate gene ERBB4: covert routes of vulnerability to psychosis detected at the population level. [research support, N.I.H., intramural research support, Non-U.S. Gov’t]. Schizophrenia Bulletin, 39(2), 349–357. doi: 10.1093/schbul/sbr169.CrossRefPubMedCentralPubMedGoogle Scholar
  73. Stefansson, H., Sigurdsson, E., Steinthorsdottir, V., Bjornsdottir, S., Sigmundsson, T., Ghosh, S., & Stefansson, K. (2002). Neuregulin 1 and susceptibility to schizophrenia. The American Journal of Human Genetics, 71(4), 877–892. doi: 10.1086/342734.CrossRefGoogle Scholar
  74. Steinthorsdottir, V., Stefansson, H., Ghosh, S., Birgisdottir, B., Bjornsdottir, S., Fasquel, A. C., & Gulcher, J. R. (2004). Multiple novel transcription initiation sites for NRG1. [comparative study]. Gene, 342(1), 97–105. doi: 10.1016/j.gene.2004.07.029.CrossRefPubMedGoogle Scholar
  75. Thompson, P. M., Vidal, C., Giedd, J. N., Gochman, P., Blumenthal, J., Nicolson, R., & Rapoport, J. L. (2001). Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. [research support, U.S. Gov’t, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11650–11655. doi: 10.1073/pnas.201243998.CrossRefPubMedCentralPubMedGoogle Scholar
  76. Thormodsen, R., Rimol, L. M., Tamnes, C. K., Juuhl-Langseth, M., Holmen, A., Emblem, K. E., & Agartz, I. (2013). Age-related cortical thickness differences in adolescents with early-onset schizophrenia compared with healthy adolescents. Psychiatry Research, 214(3), 190–196. doi: 10.1016/j.pscychresns.2013.07.003.CrossRefPubMedGoogle Scholar
  77. Torres, U. S., Portela-Oliveira, E., Borgwardt, S., & Busatto, G. F. (2013). Structural brain changes associated with antipsychotic treatment in schizophrenia as revealed by voxel-based morphometric MRI: an activation likelihood estimation meta-analysis. [meta-analysis research support, Non-U.S. Gov’t]. BMC Psychiatry, 13, 342. doi: 10.1186/1471-244X-13-342.CrossRefPubMedCentralPubMedGoogle Scholar
  78. Voets, N. L., Hough, M. G., Douaud, G., Matthews, P. M., James, A., Winmill, L., & Smith, S. (2008). Evidence for abnormalities of cortical development in adolescent-onset schizophrenia. [research support, Non-U.S. Gov’t]. NeuroImage, 43(4), 665–675. doi: 10.1016/j.neuroimage.2008.08.013.CrossRefPubMedGoogle Scholar
  79. Walhovd, K. B., Fjell, A. M., Brown, T. T., Kuperman, J. M., Chung, Y., Hagler, D. J., Jr., & Genetics, S. (2012). Long-term influence of normal variation in neonatal characteristics on human brain development. [comparative study multicenter study research support, N.I.H., extramural research support, Non-U.S. Gov’t]. Proceedings of the National Academy of Sciences of the United States of America, 109(49), 20089–20094. doi: 10.1073/pnas.1208180109.CrossRefPubMedCentralPubMedGoogle Scholar
  80. Wang, X. D., Su, Y. A., Guo, C. M., Yang, Y., & Si, T. M. (2008). Chronic antipsychotic drug administration alters the expression of neuregulin 1beta, ErbB2, ErbB3, and ErbB4 in the rat prefrontal cortex and hippocampus. [research support, Non-U.S. Gov’t]. The International Journal of Neuropsychopharmacology, 11(4), 553–561. doi: 10.1017/S1461145707008371.CrossRefPubMedGoogle Scholar
  81. Weintraub, S., Dikmen, S. S., Heaton, R. K., Tulsky, D. S., Zelazo, P. D., Bauer, P. J., & Gershon, R. C. (2013). Cognition assessment using the NIH toolbox. [research support, N.I.H., extramural research support, Non-U.S. Gov’t research support, U.S. Gov’t, Non-P.H.S.]. Neurology, 80(11 Suppl 3), S54–64. doi: 10.1212/WNL.0b013e3182872ded.CrossRefPubMedCentralPubMedGoogle Scholar
  82. Winterer, G., Coppola, R., Egan, M. F., Goldberg, T. E., & Weinberger, D. R. (2003). Functional and effective frontotemporal connectivity and genetic risk for schizophrenia. [comparative study]. Biological Psychiatry, 54(11), 1181–1192.CrossRefPubMedGoogle Scholar
  83. Zuliani, R., Moorhead, T. W., Bastin, M. E., Johnstone, E. C., Lawrie, S. M., Brambilla, P., & McIntosh, A. M. (2011). Genetic variants in the ErbB4 gene are associated with white matter integrity. [research support, Non-U.S. Gov’t]. Psychiatry Research, 191(2), 133–137. doi: 10.1016/j.pscychresns.2010.11.001.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Vanessa Douet
    • 1
    Email author
  • Linda Chang
    • 1
  • Kristin Lee
    • 1
  • Thomas Ernst
    • 1
  • For the Pediatric Imaging, Neurocognition, and Genetics (PING) Consortium
  1. 1.Department of Medicine, John A. Burns School of MedicineUniversity of Hawaii and The Queen’s Medical CenterHonoluluUSA

Personalised recommendations