Advertisement

Brain Imaging and Behavior

, Volume 10, Issue 1, pp 41–49 | Cite as

Moderate and late preterm infants exhibit widespread brain white matter microstructure alterations at term-equivalent age relative to term-born controls

  • Claire E. KellyEmail author
  • Jeanie L. Y. Cheong
  • Lillian Gabra Fam
  • Alexander Leemans
  • Marc L. Seal
  • Lex W. Doyle
  • Peter J. Anderson
  • Alicia J. Spittle
  • Deanne K. Thompson
Original Research

Abstract

Despite the many studies documenting cerebral white matter microstructural alterations associated with very preterm birth (<32 weeks’ gestation), there is a dearth of similar research in moderate and late preterm infants (born 32–36 weeks’ gestation), who experience higher rates of neurodevelopmental delays than infants born at term (≥37 weeks’ gestation). We therefore aimed to determine whether whole brain white matter microstructure differs between moderate and late preterm infants and term-born controls at term-equivalent age, as well as to identify potential perinatal risk factors for white matter microstructural alterations in moderate and late preterm infants. Whole brain white matter microstructure was studied in 193 moderate and late preterm infants and 83 controls at term-equivalent age by performing Tract-Based Spatial Statistics analysis of diffusion tensor imaging data. Moderate and late preterm infants had lower fractional anisotropy and higher mean, axial and radial diffusivities compared with controls in nearly 70 % of the brain’s major white matter fiber tracts. In the moderate and late preterm group, being born small for gestational age and male sex were associated with lower fractional anisotropy, largely within the optic radiation, corpus callosum and corona radiata. In conclusion, moderate and late preterm infants exhibit widespread brain white matter microstructural alterations compared with controls at term-equivalent age, in patterns consistent with delayed or disrupted white matter microstructural development. These findings may underpin some of the neurodevelopmental delays observed in moderate and late preterm children.

Keywords

Magnetic resonance imaging Diffusion tensor imaging Tract-based spatial statistics Preterm birth Late preterm Neonate 

Notes

Acknowledgments

We thank our research coordinator Emma McInnes, our research nurses, and the families for their willingness to participate in this study. We also acknowledge the expertise and efforts of the MRI technologists at the Melbourne Children’s MRI Centre, Royal Children’s Hospital, Melbourne.

This study was supported by the Australian National Health and Medical Research Council (Project Grant ID 1028822; Centre of Clinical Research Excellence Grant ID 546519; Centre of Research Excellence Grant ID 1060733; Senior Research Fellowship ID 1081288 to P.J.A.; Early Career Fellowship ID 1053787 to J.L.Y.C., ID 1053767 to A.J.S., ID 1012236 to D.K.T.), Murdoch Childrens Research Institute, Clinical Sciences Theme Grant, the Victorian Government Operational Infrastructure Support Program, and The Royal Children’s Hospital Foundation. The research of A.L. is supported by VIDI Grant 639.072.411 from The Netherlands Organisation for Scientific Research (NWO).

Conflict of interest

Claire E Kelly, Jeanie LY Cheong, Lillian Gabra Fam, Alexander Leemans, Marc L Seal, Lex W Doyle, Peter J Anderson, Alicia J Spittle and Deanne K Thompson declare that they have no conflict of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

References

  1. Bach M., Laun F. B., Leemans A., Tax C. M., Biessels G. J., Stieltjes B., et al. (2014). Methodological considerations on tract-based spatial statistics (TBSS). NeuroImage. doi: 10.1016/j.neuroimage.2014.06.021.PubMedCentralGoogle Scholar
  2. Ball G., Counsell S. J., Anjari M., Merchant N., Arichi T., Doria V., et al. (2010). An optimised tract-based spatial statistics protocol for neonates: applications to prematurity and chronic lung disease. NeuroImage, 53(1), 94–102.CrossRefPubMedGoogle Scholar
  3. Blencowe H., Cousens S., Oestergaard M. Z., Chou D., Moller A. B., Narwal R., et al. (2012). National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet, 379(9832), 2162–2172.CrossRefPubMedGoogle Scholar
  4. Budde M. D., Xie M., Cross A. H., & Song S. K. (2009). Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixelwise analysis. The Journal of Neuroscience, 29(9), 2805–2813.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cheong J. L., & Doyle L. W. (2012). Increasing rates of prematurity and epidemiology of late preterm birth. Journal of Paediatrics and Child Health, 48(9), 784–788.CrossRefPubMedGoogle Scholar
  6. Constable R. T., Ment L. R., Vohr B. R., Kesler S. R., Fulbright R. K., Lacadie C., et al. (2008). Prematurely born children demonstrate white matter microstructural differences at 12 years of age, relative to term control subjects: an investigation of group and gender effects. Pediatrics, 121(2), 306–316.CrossRefPubMedGoogle Scholar
  7. De Bie H. M., Oostrom K. J., Boersma M., Veltman D. J., Barkhof F., Delemarre-van de Waal H. A., et al. (2011). Global and regional differences in brain anatomy of young children born small for gestational age. PloS One, 6(9), e24116.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Edden R. A., & Jones D. K. (2011). Spatial and orientational heterogeneity in the statistical sensitivity of skeleton-based analyses of diffusion tensor MR imaging data. Journal of Neuroscience Methods, 201(1), 213–219.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Griffith J. L., Shimony J. S., Cousins S. A., Rees S. E., McCurnin D. C., Inder T. E., et al. (2012). MR imaging correlates of white-matter pathology in a preterm baboon model. Pediatric Research, 71(2), 185–191.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Haynes R. L., Borenstein N. S., Desilva T. M., Folkerth R. D., Liu L. G., Volpe J. J., et al. (2005). Axonal development in the cerebral white matter of the human fetus and infant. The Journal of Comparative Neurology, 484(2), 156–167.CrossRefPubMedGoogle Scholar
  11. Haynes R. L., Sleeper L. A., Volpe J. J., & Kinney H. C. (2013). Neuropathologic studies of the encephalopathy of prematurity in the late preterm infant. Clinics in Perinatology, 40(4), 707–722.CrossRefPubMedGoogle Scholar
  12. Heemskerk A. M., Leemans A., Plaisier A., Pieterman K., Lequin M. H., & Dudink J. (2013). Acquisition guidelines and quality assessment tools for analyzing neonatal diffusion tensor MRI data. American Journal of Neuroradiology, 34(8), 1496–1505.CrossRefPubMedGoogle Scholar
  13. Huppi P. S., & Dubois J. (2006). Diffusion tensor imaging of brain development. Seminars in Fetal and Neonatal Medicine, 11(6), 489–497.CrossRefPubMedGoogle Scholar
  14. Huppi P. S., Warfield S., Kikinis R., Barnes P. D., Zientara G. P., Jolesz F. A., et al. (1998). Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Annals of Neurology, 43(2), 224–235.CrossRefPubMedGoogle Scholar
  15. Jones D. K., & Leemans A. (2011). Diffusion tensor imaging. Methods in Molecular Biology, 711, 127–144.CrossRefPubMedGoogle Scholar
  16. Jones D. K., Knosche T. R., & Turner R. (2013). White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. NeuroImage, 73, 239–254.CrossRefPubMedGoogle Scholar
  17. Kinney H. C. (2006). The near-term (late preterm) human brain and risk for periventricular leukomalacia: a review. Seminars in Perinatology, 30(2), 81–88.CrossRefPubMedGoogle Scholar
  18. Kugelman A., & Colin A. A. (2013). Late preterm infants: near term but still in a critical developmental time period. Pediatrics, 132(4), 741–751.CrossRefPubMedGoogle Scholar
  19. Kumar R., Nguyen H. D., Macey P. M., Woo M. A., & Harper R. M. (2012). Regional brain axial and radial diffusivity changes during development. Journal of Neuroscience Research, 90(2), 346–355.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Leemans A., & Jones D. K. (2009). The B-matrix must be rotated when correcting for subject motion in DTI data. Magnetic Resonance in Medicine, 61(6), 1336–1349.CrossRefPubMedGoogle Scholar
  21. Leemans, A., Jeurissen, B., Sijbers, J., & Jones, D. K. (2009). ExploreDTI: A graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In 17th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Hawaii, USA, 18–24 April 2009 (pp. 3537).Google Scholar
  22. Lepomaki V., Matomaki J., Lapinleimu H., Lehtonen L., Haataja L., Komu M., et al. (2013). Effect of antenatal growth on brain white matter maturation in preterm infants at term using tract-based spatial statistics. Pediatric Radiology, 43(1), 80–85.CrossRefPubMedGoogle Scholar
  23. Liu Y., Metens T., Absil J., De Maertelaer V., Baleriaux D., David P., et al. (2011). Gender differences in language and motor-related fibers in a population of healthy preterm neonates at term-equivalent age: a diffusion tensor and probabilistic tractography study. American Journal of Neuroradiology, 32(11), 2011–2016.CrossRefPubMedGoogle Scholar
  24. Mukherjee P., & McKinstry R. C. (2006). Diffusion tensor imaging and tractography of human brain development. Neuroimaging Clinics of North America, 16(1), 19–vii43.CrossRefPubMedGoogle Scholar
  25. Munakata S., Okada T., Okahashi A., Yoshikawa K., Usukura Y., Makimoto M., et al. (2013). Gray matter volumetric MRI differences late-preterm and term infants. Brain and Development, 35(1), 10–16.CrossRefPubMedGoogle Scholar
  26. Oishi K., Mori S., Donohue P. K., Ernst T., Anderson L., Buchthal S., et al. (2011). Multi-contrast human neonatal brain atlas: application to normal neonate development analysis. NeuroImage, 56(1), 8–20.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Pandit A. S., Ball G., Edwards A. D., & Counsell S. J. (2013). Diffusion magnetic resonance imaging in preterm brain injury. Neuroradiology, 55(Suppl 2), 65–95.CrossRefPubMedGoogle Scholar
  28. Pannek K., Scheck S. M., Colditz P. B., Boyd R. N., & Rose S. E. (2014). Magnetic resonance diffusion tractography of the preterm infant brain: a systematic review. Developmental Medicine and Child Neurology, 56(2), 113–124.CrossRefPubMedGoogle Scholar
  29. Raju T. N. (2013). Moderately preterm, late preterm and early term infants: research needs. Clinics in Perinatology, 40(4), 791–797.CrossRefPubMedGoogle Scholar
  30. Rogers C. E., Barch D. M., Sylvester C. M., Pagliaccio D., Harms M. P., Botteron K. N., et al. (2014). Altered Gray Matter Volume and School Age Anxiety in Children Born Late Preterm. The Journal of Pediatrics. doi: 10.1016/j.jpeds.2014.06.063.Google Scholar
  31. Rose J., Butler E. E., Lamont L. E., Barnes P. D., Atlas S. W., & Stevenson D. K. (2009). Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children. Developmental Medicine and Child Neurology, 51(7), 526–535.CrossRefPubMedGoogle Scholar
  32. Schwarz C. G., Reid R. I., Gunter J. L., Senjem M. L., Przybelski S. A., Zuk S. M., et al. (2014). Improved DTI registration allows voxel-based analysis that outperforms tract-based spatial statistics. NeuroImage, 94, 65–78.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Smith S. M., & Nichols T. E. (2009). Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage, 44(1), 83–98.CrossRefPubMedGoogle Scholar
  34. Smith S. M., Jenkinson M., Johansen-Berg H., Rueckert D., Nichols T. E., Mackay C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4), 1487–1505.CrossRefPubMedGoogle Scholar
  35. Song S. K., Sun S. W., Ramsbottom M. J., Chang C., Russell J., & Cross A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage, 17(3), 1429–1436.CrossRefPubMedGoogle Scholar
  36. Takahashi E., Hayashi E., Schmahmann J. D., & Grant P. E. (2014). Development of cerebellar connectivity in human fetal brains revealed by high angular resolution diffusion tractography. NeuroImage, 96, 326–333.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Van Hecke W., Leemans A., De Backer S., Jeurissen B., Parizel P. M., & Sijbers J. (2010). Comparing isotropic and anisotropic smoothing for voxel-based DTI analyses: A simulation study. Human Brain Mapping, 31(1), 98–114.PubMedGoogle Scholar
  38. Veraart J., Sijbers J., Sunaert S., Leemans A., & Jeurissen B. (2013). Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls. NeuroImage, 81, 335–346.CrossRefPubMedGoogle Scholar
  39. Vohr B. (2013). Long-term outcomes of moderately preterm, late preterm, and early term infants. Clinics in Perinatology, 40(4), 739–751.CrossRefPubMedGoogle Scholar
  40. Volpe J. J. (2009). Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurology, 8(1), 110–124.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Walsh J. M., Doyle L. W., Anderson P. J., Lee K. J., & Cheong J. L. (2014). Moderate and late preterm birth: effect on brain size and maturation at term-equivalent age. Radiology. doi: 10.1148/radiol.14132410.Google Scholar
  42. Winkler A. M., Ridgway G. R., Webster M. A., Smith S. M., & Nichols T. E. (2014). Permutation inference for the general linear model. NeuroImage, 92, 381–397.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Claire E. Kelly
    • 1
    • 8
    Email author
  • Jeanie L. Y. Cheong
    • 1
    • 2
    • 3
  • Lillian Gabra Fam
    • 1
    • 4
  • Alexander Leemans
    • 5
  • Marc L. Seal
    • 1
    • 4
  • Lex W. Doyle
    • 1
    • 2
    • 3
    • 4
  • Peter J. Anderson
    • 1
    • 4
  • Alicia J. Spittle
    • 1
    • 2
    • 6
  • Deanne K. Thompson
    • 1
    • 4
    • 7
  1. 1.Murdoch Childrens Research InstituteMelbourneAustralia
  2. 2.Royal Women’s HospitalMelbourneAustralia
  3. 3.Department of Obstetrics and GynaecologyUniversity of MelbourneMelbourneAustralia
  4. 4.Department of PaediatricsUniversity of MelbourneMelbourneAustralia
  5. 5.Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands
  6. 6.Department of PhysiotherapyUniversity of MelbourneMelbourneAustralia
  7. 7.Florey Institute of Neuroscience and Mental HealthMelbourneAustralia
  8. 8.Victorian Infant Brain Study (VIBeS), Murdoch Childrens Research InstituteThe Royal Children’s HospitalParkvilleAustralia

Personalised recommendations