Advertisement

Brain Imaging and Behavior

, Volume 10, Issue 1, pp 12–20 | Cite as

Striatum morphometry is associated with cognitive control deficits and symptom severity in internet gaming disorder

  • Chenxi Cai
  • Kai Yuan
  • Junsen Yin
  • Dan Feng
  • Yanzhi Bi
  • Yangding Li
  • Dahua Yu
  • Chenwang Jin
  • Wei Qin
  • Jie Tian
Original Research

Abstract

Internet gaming disorder (IGD), identified in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) Section III as a condition warranting more clinical research, may be associated with impaired cognitive control. Previous IGD-related studies had revealed structural abnormalities in the prefrontal cortex, an important part of prefrontal-striatal circuits, which play critical roles in cognitive control. However, little is known about the relationship between the striatal nuclei (caudate, putamen, and nucleus accumbens) volumes and cognitive control deficit in individuals with IGD. Twenty-seven adolescents with IGD and 30 age-, gender- and education-matched healthy controls participated in this study. The volume differences of the striatum were assessed by measuring subcortical volume in FreeSurfer. Meanwhile, the Stroop task was used to detect cognitive control deficits. Correlation analysis was used to investigate the relationship between striatal volumes and performance in the Stroop task as well as severity in IGD. Relative to controls, the IGD committed more incongruent condition response errors during the Stroop task and showed increased volumes of dorsal striatum (caudate) and ventral striatum (nucleus accumbens). In addition, caudate volume was correlated with Stroop task performance and nucleus accumbens (NAc) volume was associated with the internet addiction test (IAT) score in the IGD group. The increased volumes of the right caudate and NAc and their association with behavioral characteristics (i.e., cognitive control and severity) in IGD were detected in the present study. Our findings suggest that the striatum may be implicated in the underlying pathophysiology of IGD.

Keywords

Cognitive control Internet gaming disorder (IGD) Striatum Color-word Stroop task Structural magnetic resonance imaging 

Notes

Acknowledgments

This paper is supported by the Project for the National Key Basic Research and Development Program (973) under Grant nos. 2014CB543203, 2011CB707700, 2012CB518501, the National Natural Science Foundation of China under Grant nos. 81401478, 81401488, 81227901, 81271644, 81271546, 81101036, 81101108, 31200837, 81301281, the Natural Science Basic Research Plan in Shaanxi Province of China under Grant no. 2014JQ4118, and the Fundamental Research Funds for the Central Universities under the Grant nos. 8002–72125760, 8002–72135767, 8002–72145760, the Natural Science Foundation of Inner Mongolia under Grant no. 2012MS0908. General Financial Grant the China Post- doctoral Science Foundation under Grant no. 2014 M552416.

Competing Interests

Chenxi Cai, Kai Yuan, Junsen Yin, Dan Feng, Yanzhi Bi, Yangding Li, Dahua Yu, Chenwang Jin, Wei Qin and Jie Tian declare that they have no conflict of interest.

References

  1. Apicella, P., Ljungberg, T., Scarnati, E., & Schultz, W. (1991). Responses to reward in monkey dorsal and ventral striatum. Experimental Brain Research, 85(3), 491–500.CrossRefPubMedGoogle Scholar
  2. Apicella, P., Scarnati, E., Ljungberg, T., & Schultz, W. (1992). Neuronal activity in monkey striatum related to the expectation of predictable environmental events. Journal of Neurophysiology, 68, 945.PubMedGoogle Scholar
  3. Bari, A., Dec, A., Lee, A., Lee, J., Song, D., Dale, E., et al. (2014). Enhanced inhibitory control by neuropeptide Y Y5 receptor blockade in rats. Psychopharmacology, 1–15.Google Scholar
  4. Bavelier, D., Green, C. S., Han, D. H., Renshaw, P. F., Merzenich, M. M., & Gentile, D. A. (2011). Brains on video games. Nature Reviews Neuroscience, 12(12), 763–768.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Berman, S., O’Neill, J., Fears, S., Bartzokis, G., & London, E. D. (2008). Abuse of amphetamines and structural abnormalities in the brain. Annals of the New York Academy of Sciences, 1141(1), 195–220.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Block, J. (2008). Issues for DSM-V: internet addiction. American Journal of Psychiatry, 165(3), 306–307.CrossRefPubMedGoogle Scholar
  7. Brand, M., Young, K. S., & Laier, C. (2014). Prefrontal control and Internet addiction: A theoretical model and review of neuropsychological and neuroimaging findings. Frontiers in human neuroscience, 8.Google Scholar
  8. Byun, S., Ruffini, C., Mills, J. E., Douglas, A. C., Niang, M., Stepchenkova, S., et al. (2009). Internet addiction: metasynthesis of 1996–2006 quantitative research. Cyber Psychology & Behavior, 12(2), 203–207.CrossRefGoogle Scholar
  9. Casey, B., & Jones, R. M. (2010). Neurobiology of the adolescent brain and behavior: implications for substance use disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 49(12), 1189–1201.Google Scholar
  10. Christakis, D. A. (2010). Internet addiction: a 21st century epidemic? BMC Medicine, 8(1), 61.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194.CrossRefPubMedGoogle Scholar
  12. Delgado, M. R. (2007). Reward‐related responses in the human striatum. Annals of the New York Academy of Sciences, 1104(1), 70–88.CrossRefPubMedGoogle Scholar
  13. Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.CrossRefPubMedGoogle Scholar
  14. Dong, G., Zhou, H., & Zhao, X. (2011). Male internet addicts show impaired executive control ability: evidence from a color-word stroop task. Neuroscience Letters, 499(2), 114–118.CrossRefPubMedGoogle Scholar
  15. Dong, G., Hu, Y., Lin, X., & Lu, Q. (2013). What makes internet addicts continue playing online even when faced by severe negative consequences? Possible explanations from an fMRI study. Biological Psychology, 94(2), 282–289.CrossRefPubMedGoogle Scholar
  16. Flisher, C. (2010). Getting plugged in: an overview of internet addiction. Journal of Paediatrics and Child Health, 46(10), 557–559.CrossRefPubMedGoogle Scholar
  17. Hasin, D. S., O’Brien, C. P., Auriacombe, M., Borges, G., Bucholz, K., Budney, A., et al. (2013). DSM-5 criteria for substance use disorders: recommendations and rationale. American Journal of Psychiatry, 170(8), 834–851.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Holden, C. (2001). ‘Behavioral’addictions: do they exist? Science, 294(5544), 980–982.CrossRefPubMedGoogle Scholar
  19. Howell, N. A., Worbe, Y., Lange, I., Tait, R., Irvine, M., Banca, P., et al. (2013). Increased ventral striatal volume in college-aged binge drinkers. PloS One, 8(9), e74164.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Janes, A. C., Park, M. T. M., Farmer, S., & Chakravarty, M. M. (2014). Striatal Morphology is Associated with Tobacco Cigarette Craving. Neuropsychopharmacology.Google Scholar
  21. Kim, K., Ryu, E., Chon, M.-Y., Yeun, E.-J., Choi, S.-Y., Seo, J.-S., et al. (2006). Internet addiction in Korean adolescents and its relation to depression and suicidal ideation: a questionnaire survey. International Journal of Nursing Studies, 43(2), 185–192.CrossRefPubMedGoogle Scholar
  22. Kim, S. H., Baik, S.-H., Park, C. S., Kim, S. J., Choi, S. W., & Kim, S. E. (2011). Reduced striatal dopamine D2 receptors in people with Internet addiction. NeuroReport, 22(8), 407.CrossRefPubMedGoogle Scholar
  23. Ko, C.-H., Liu, G.-C., Hsiao, S., Yen, J.-Y., Yang, M.-J., Lin, W.-C., et al. (2009). Brain activities associated with gaming urge of online gaming addiction. Journal of Psychiatric Research, 43(7), 739–747.CrossRefPubMedGoogle Scholar
  24. Ko, C.-H., Liu, G.-C., Yen, J.-Y., Yen, C.-F., Chen, C.-S., & Lin, W.-C. (2013a). The brain activations for both cue-induced gaming urge and smoking craving among subjects comorbid with Internet gaming addiction and nicotine dependence. Journal of Psychiatric Research, 47(4), 486–493.CrossRefPubMedGoogle Scholar
  25. Ko, C. H., Liu, G. C., Yen, J. Y., Chen, C. Y., Yen, C. F., & Chen, C. S. (2013b). Brain correlates of craving for online gaming under cue exposure in subjects with Internet gaming addiction and in remitted subjects. Addiction Biology, 18(3), 559–569.CrossRefPubMedGoogle Scholar
  26. Ko, C.-H., Hsieh, T.-J., Chen, C.-Y., Yen, C.-F., Chen, C.-S., Yen, J.-Y., et al. (2014). Altered brain activation during response inhibition and error processing in subjects with Internet gaming disorder: a functional magnetic imaging study. European archives of psychiatry and clinical neuroscience, 1–12.Google Scholar
  27. Koehler, S., Hasselmann, E., Wüstenberg, T., Heinz, A., & Romanczuk-Seiferth, N. (2013). Higher volume of ventral striatum and right prefrontal cortex in pathological gambling. Brain Structure and Function, 1–9.Google Scholar
  28. Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., et al. (1998). Evidence for striatal dopamine release during a video game. Nature, 393(6682), 266–268.CrossRefPubMedGoogle Scholar
  29. Kucinski, A., Paolone, G., Bradshaw, M., Albin, R. L., & Sarter, M. (2013). Modeling fall propensity in Parkinson’s disease: deficits in the attentional control of complex movements in rats with cortical-cholinergic and striatal–dopaminergic deafferentation. The Journal of Neuroscience, 33(42), 16522–16539.CrossRefPubMedGoogle Scholar
  30. Kühn, S., & Gallinat, J. (2014). Brains online: structural and functional correlates of habitual Internet use. Addiction biology.Google Scholar
  31. Kühn, S., Romanowski, A., Schilling, C., Lorenz, R., Mörsen, C., Seiferth, N., et al. (2011). The neural basis of video gaming. Translational Psychiatry, 1(11), e53.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li, B., Friston, K. J., Liu, J., Liu, Y., Zhang, G., Cao, F., et al. (2014). Impaired Frontal-Basal Ganglia Connectivity in Adolescents with Internet Addiction. Scientific reports, 4.Google Scholar
  33. Meng, Y., Deng, W., Wang, H., Guo, W., & Li, T. (2014). The prefrontal dysfunction in individuals with Internet gaming disorder: a meta‐analysis of functional magnetic resonance imaging studies. Addiction Biology. Google Scholar
  34. Morein-Zamir, S., & Robbins, T. W. (2014). Fronto-striatal circuits in response-inhibition: Relevance to addiction. Brain research.Google Scholar
  35. Nelson, C., Sarter, M., & Bruno, J. (2005). Prefrontal cortical modulation of acetylcholine release in posterior parietal cortex. Neuroscience, 132(2), 347–359.CrossRefPubMedGoogle Scholar
  36. Park, H. S., Kim, S. H., Bang, S. A., Yoon, E. J., Cho, S. S., & Kim, S. E. (2010). Altered regional cerebral glucose metabolism in internet game overusers: a 18F-fluorodeoxyglucose positron emission tomography study. CNS Spectrums, 15(3), 159–166.PubMedGoogle Scholar
  37. Pawlikowski, M., & Brand, M. (2011). Excessive Internet gaming and decision making: do excessive World of Warcraft players have problems in decision making under risky conditions? Psychiatry Research, 188(3), 428–433.CrossRefPubMedGoogle Scholar
  38. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643.CrossRefGoogle Scholar
  39. Volkow, N. D., Wang, G.-J., Fowler, J. S., Tomasi, D., & Telang, F. (2011). Addiction: beyond dopamine reward circuitry. Proceedings of the National Academy of Sciences, 108(37), 15037–15042.CrossRefGoogle Scholar
  40. Weinstein, A., & Lejoyeux, M. (2013). New developments on the neurobiological and pharmaco‐genetic mechanisms underlying internet and videogame addiction. The American Journal on Addictions.Google Scholar
  41. Weng, C.-B., Qian, R.-B., Fu, X.-M., Lin, B., Han, X.-P., Niu, C.-S., et al. (2013). Gray matter and white matter abnormalities in online game addiction. European Journal of Radiology, 82(8), 1308–1312.CrossRefPubMedGoogle Scholar
  42. Widyanto, L., & McMurran, M. (2004). The psychometric properties of the internet addiction test. Cyber Psychology & Behavior, 7(4), 443–450.CrossRefGoogle Scholar
  43. Winkler, A., Dörsing, B., Rief, W., Shen, Y., & Glombiewski, J. A. (2013). Treatment of internet addiction: a meta-analysis. Clinical Psychology Review, 33(2), 317–329.CrossRefPubMedGoogle Scholar
  44. Wrase, J., Makris, N., Braus, D., Mann, K., Smolka, M., Kennedy, D., et al. (2008). Amygdala volume associated with alcohol abuse relapse and craving. American Journal of Psychiatry, 165(9), 1179–1184.CrossRefPubMedGoogle Scholar
  45. Xing, L., Yuan, K., Bi, Y., Yin, J., Cai, C., Feng, D., et al. (2014). Reduced fiber integrity and cognitive control in adolescents with internet gaming disorder. Brain research.Google Scholar
  46. Xu, J., Mendrek, A., Cohen, M. S., Monterosso, J., Simon, S., Jarvik, M., et al. (2006). Effect of cigarette smoking on prefrontal cortical function in nondeprived smokers performing the Stroop Task. Neuropsychopharmacology, 32(6), 1421–1428.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yuan, K., Qin, W., Liu, Y., & Tian, J. (2011a). Internet addiction: neuroimaging findings. Communicative & Integrative Biology, 4(6), 637.CrossRefGoogle Scholar
  48. Yuan, K., Qin, W., Wang, G., Zeng, F., Zhao, L., Yang, X., et al. (2011b). Microstructure abnormalities in adolescents with internet addiction disorder. PloS One, 6(6), e20708.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yuan, K., Cheng, P., Dong, T., Bi, Y., Xing, L., Yu, D., et al. (2013a). Cortical thickness abnormalities in late adolescence with online gaming addiction. PloS One, 8(1), e53055.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yuan, K., Jin, C., Cheng, P., Yang, X., Dong, T., Bi, Y., et al. (2013b). Amplitude of low frequency fluctuation abnormalities in adolescents with online gaming addiction. PloS One, 8(11), e78708.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chenxi Cai
    • 1
    • 2
  • Kai Yuan
    • 1
    • 2
  • Junsen Yin
    • 1
    • 2
  • Dan Feng
    • 1
    • 2
  • Yanzhi Bi
    • 1
    • 2
  • Yangding Li
    • 1
    • 2
  • Dahua Yu
    • 3
  • Chenwang Jin
    • 4
  • Wei Qin
    • 1
    • 2
  • Jie Tian
    • 1
    • 2
    • 5
  1. 1.School of Life Science and TechnologyXidian UniversityXi’anPeople’s Republic of China
  2. 2.Engineering Research Center of Molecular and Neuro Imaging Ministry of EducationXi’anPeople’s Republic of China
  3. 3.Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image ProcessingSchool of Information Engineering, Inner Mongolia University of Science and TechnologyBaotouPeople’s Republic of China
  4. 4.Department of Medical ImagingThe First Affiliated Hospital of Medical College, Xi’an Jiaotong UniversityXi’anPeople’s Republic of China
  5. 5.Institute of Automation, Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations