Brain Imaging and Behavior

, Volume 10, Issue 1, pp 1–11 | Cite as

Functional neuroanatomical correlates of episodic memory impairment in early phase psychosis

  • Michael Matthew Francis
  • Tom A. Hummer
  • Jenifer L. Vohs
  • Matthew G. Yung
  • Emily Liffick
  • Nicole F. Mehdiyoun
  • Alexander J. Radnovich
  • Brenna C. McDonald
  • Andrew J. Saykin
  • Alan Breier
Original Research

Abstract

Studies have demonstrated that episodic memory (EM) is often preferentially disrupted in schizophrenia. The neural substrates that mediate EM impairment in this illness are not fully understood. Several functional magnetic resonance imaging (fMRI) studies have employed EM probe tasks to elucidate the neural underpinnings of impairment, though results have been inconsistent. The majority of EM imaging studies have been conducted in chronic forms of schizophrenia with relatively few studies in early phase patients. Early phase schizophrenia studies are important because they may provide information regarding when EM deficits occur and address potential confounds more frequently observed in chronic populations. In this study, we assessed brain activation during the performance of visual scene encoding and recognition fMRI tasks in patients with earlyphase psychosis (n = 35) and age, sex, and race matched healthy control subjects (n = 20). Patients demonstrated significantly lower activation than controls in the right hippocampus and left fusiform gyrus during scene encoding and lower activation in the posterior cingulate, precuneus, and left middle temporal cortex during recognition of target scenes. Symptom levels were not related to the imaging findings, though better cognitive performance in patients was associated with greater right hippocampal activation during encoding. These results provide evidence of altered function in neuroanatomical circuitry subserving EM early in the course of psychotic illness, which may have implications for pathophysiological models of this illness.

Keywords

Episodic memory Encoding Recognition Early phase psychosis fMRI Cognition 

Notes

Acknowledgments

The authors thank Megan Gaunnac, Teresa Kulig, Emmalee Metzler, Heidi Hedrick, John West, Yang Wang, Kelsey Benson, Kami Walters, Katie White, Joan Showalter, and David Spradley for their technical support and recruitment efforts. The authors would also like to thank the Eskenazi Health Midtown Community Mental Health Center for its continued research support.

The authors would like to thank the Stanley Medical Research Institute, grant #10T-002, for providing funding for this study. Additional support was obtained from grant #UH3TR000955, supported by the National Center For Advancing Translational Sciences of the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Stanley Medical Research Institute or the National Institutes of Health.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Disclosures

Drs. Francis, Hummer, Vohs, Liffick, Radnovich, McDonald, Saykin, and Breier and Ms. Mehdiyoun and Mr. Yung declare that they have no conflict of interest.

Supplementary material

11682_2015_9357_MOESM1_ESM.docx (35 kb)
Supplement Table 1(DOCX 34 kb)
11682_2015_9357_MOESM2_ESM.docx (35 kb)
Supplement Table 2(DOCX 34 kb)

References

  1. Achim, A. M., & Lepage, M. (2003). Is associative recognition more impaired than item recognition memory in Schizophrenia? A meta-analysis. Brain and Cognition, 53(2), 121–124.PubMedCrossRefGoogle Scholar
  2. Achim, A. M., & Lepage, M. (2005a). Episodic memory-related activation in schizophrenia: meta-analysis. British Journal of Psychiatry, 187, 500–509. doi:10.1192/bjp.187.6.500.PubMedCrossRefGoogle Scholar
  3. Achim, A. M., & Lepage, M. (2005b). Neural correlates of memory for items and for associations: an event-related functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 17(4), 652–667. doi:10.1162/0898929053467578.PubMedCrossRefGoogle Scholar
  4. Aleman, A., Hijman, R., de Haan, E. H., & Kahn, R. S. (1999). Memory impairment in schizophrenia: a meta-analysis. The American Journal of Psychiatry, 156(9), 1358–1366.PubMedGoogle Scholar
  5. Allen, P., Seal, M. L., Valli, I., Fusar-Poli, P., Perlini, C., Day, F., & McGuire, P. K. (2011). Altered prefrontal and hippocampal function during verbal encoding and recognition in people with prodromal symptoms of psychosis. Schizophrenia Bulletin, 37(4), 746–756. doi:10.1093/schbul/sbp113.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barch, D. M., Csernansky, J. G., Conturo, T., & Snyder, A. Z. (2002). Working and long-term memory deficits in schizophrenia: is there a common prefrontal mechanism? Journal of Abnormal Psychology, 111(3), 478–494.PubMedCrossRefGoogle Scholar
  7. Bonner-Jackson, A., Haut, K., Csernansky, J. G., & Barch, D. M. (2005). The influence of encoding strategy on episodic memory and cortical activity in schizophrenia. Biological Psychiatry, 58(1), 47–55. doi:10.1016/j.biopsych.2005.05.011.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Burgess, N., Maguire, E. A., & O’Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625–641.PubMedCrossRefGoogle Scholar
  9. Cabeza, R., Ciaramelli, E., Olson, I. R., & Moscovitch, M. (2008). The parietal cortex and episodic memory: an attentional account. Nature Review Neuroscience, 9(8), 613–625. doi:10.1038/nrn2459.CrossRefGoogle Scholar
  10. Campbell, N., Boustani, M., Limbil, T., Ott, C., Fox, C., Maidment, I., & Gulati, R. (2009). The cognitive impact of anticholinergics: a clinical review. Clinical Interventions in Aging, 4, 225–233.PubMedPubMedCentralGoogle Scholar
  11. Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(Pt 3), 564–583. doi:10.1093/brain/awl004.PubMedCrossRefGoogle Scholar
  12. Cohen, N. J., Ryan, J., Hunt, C., Romine, L., Wszalek, T., & Nash, C. (1999). Hippocampal system and declarative (relational) memory: summarizing the data from functional neuroimaging studies. Hippocampus, 9(1), 83–98. doi:10.1002/(SICI)1098-1063(1999)9:1<83::AID-HIPO9>3.0.CO;2-7.PubMedCrossRefGoogle Scholar
  13. Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162–173.PubMedCrossRefGoogle Scholar
  14. Danion, J. M., Huron, C., Vidailhet, P., & Berna, F. (2007). Functional mechanisms of episodic memory impairment in schizophrenia. Canadian Journal of Psychiatry, 52(11), 693–701.PubMedGoogle Scholar
  15. Davidson, M., Galderisi, S., Weiser, M., Werbeloff, N., Fleischhacker, W. W., Keefe, R. S., & Kahn, R. S. (2009). Cognitive effects of antipsychotic drugs in first-episode schizophrenia and schizophreniform disorder: a randomized, open-label clinical trial (EUFEST). The American Journal of Psychiatry, 166(6), 675–682. doi:10.1176/appi.ajp.2008.08060806.PubMedCrossRefGoogle Scholar
  16. Detre, J. A., Maccotta, L., King, D., Alsop, D. C., Glosser, G., D’Esposito, M., & French, J. A. (1998). Functional MRI lateralization of memory in temporal lobe epilepsy. Neurology, 50(4), 926–932.PubMedCrossRefGoogle Scholar
  17. Eyler Zorrilla, L. T., Jeste, D. V., Paulus, M., & Brown, G. G. (2003). Functional abnormalities of medial temporal cortex during novel picture learning among patients with chronic schizophrenia. Schizophrenia Research, 59(2–3), 187–198.PubMedCrossRefGoogle Scholar
  18. Fallon, J. H., Opole, I. O., & Potkin, S. G. (2003). The neuroanatomy of schizophrenia: circuitry and neurotransmitter systems. Clinical Neuroscience Research, 3(1), 77–107.CrossRefGoogle Scholar
  19. First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (2002). Structured clinical Interview for DSM-IV-TR Axis I disorders, research version, patient edition. New York: Biometrics Research, New York State Psychiatric Institute.Google Scholar
  20. Flor-Henry, P. (1990). Neuropsychology and psychopathology: a progress report. Neuropsychology Review, 1(2), 103–123.PubMedCrossRefGoogle Scholar
  21. Fransson, P., & Marrelec, G. (2008). The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. NeuroImage, 42(3), 1178–1184. doi:10.1016/j.neuroimage.2008.05.059.PubMedCrossRefGoogle Scholar
  22. Friedman, J. I., Harvey, P. D., Coleman, T., Moriarty, P. J., Bowie, C., Parrella, M., & Davis, K. L. (2001). Six-year follow-up study of cognitive and functional status across the lifespan in schizophrenia: a comparison with Alzheimer’s disease and normal aging. The American Journal of Psychiatry, 158(9), 1441–1448.PubMedCrossRefGoogle Scholar
  23. Gabrieli, J. D., Brewer, J. B., Desmond, J. E., & Glover, G. H. (1997). Separate neural bases of two fundamental memory processes in the human medial temporal lobe. Science, 276(5310), 264–266.PubMedCrossRefGoogle Scholar
  24. Gold, J. M., Randolph, C., Carpenter, C. J., Goldberg, T. E., & Weinberger, D. R. (1992). Forms of memory failure in schizophrenia. Journal of Abnormal Psychology, 101(3), 487–494.PubMedCrossRefGoogle Scholar
  25. Green, M. F. (1996). What are the functional consequences of neurocognitive deficits in schizophrenia? The American Journal of Psychiatry, 153(3), 321–330.PubMedCrossRefGoogle Scholar
  26. Green, M. F., Kern, R. S., Braff, D. L., & Mintz, J. (2000). Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the “right stuff”? Schizophrenia Bulletin, 26(1), 119–136.PubMedCrossRefGoogle Scholar
  27. Harvey, P. D., & McGurk, S. R. (2000). Cost of schizophrenia: focus on vocational impairment. The Economics of Neuroscience, 2, 42–48.Google Scholar
  28. Haxby, J. V., Horwitz, B., Ungerleider, L. G., Maisog, J. M., Pietrini, P., & Grady, C. L. (1994). The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. Journal of Neuroscience, 14(11 Pt 1), 6336–6353.PubMedGoogle Scholar
  29. Heckers, S., Rauch, S. L., Goff, D., Savage, C. R., Schacter, D. L., Fischman, A. J., & Alpert, N. M. (1998). Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nature Neuroscience, 1(4), 318–323. doi:10.1038/1137.PubMedCrossRefGoogle Scholar
  30. Heckers, S., Curran, T., Goff, D., Rauch, S. L., Fischman, A. J., Alpert, N. M., & Schacter, D. L. (2000). Abnormalities in the thalamus and prefrontal cortex during episodic object recognition in schizophrenia. Biological Psychiatry, 48(7), 651–657.PubMedCrossRefGoogle Scholar
  31. Heinrichs, R. W., & Zakzanis, K. K. (1998). Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology, 12(3), 426–445.PubMedCrossRefGoogle Scholar
  32. Hofer, A., Weiss, E. M., Golaszewski, S. M., Siedentopf, C. M., Brinkhoff, C., Kremser, C., & Fleischhacker, W. W. (2003). Neural correlates of episodic encoding and recognition of words in unmedicated patients during an acute episode of schizophrenia: a functional MRI study. The American Journal of Psychiatry, 160(10), 1802–1808.PubMedCrossRefGoogle Scholar
  33. Hulvershorn, L. A., Cullen, K. R., Francis, M. M., & Westlund, M. K. (2014). Developmental resting state functional connectivity for clinicians. Current Behavioral Neuroscience Reports, 1(3), 161–169.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Jessen, F., Scheef, L., Germeshausen, L., Tawo, Y., Kockler, M., Kuhn, K. U., & Heun, R. (2003). Reduced hippocampal activation during encoding and recognition of words in schizophrenia patients. The American Journal of Psychiatry, 160(7), 1305–1312.PubMedCrossRefGoogle Scholar
  35. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 4302–4311.PubMedGoogle Scholar
  36. Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261–276.PubMedCrossRefGoogle Scholar
  37. Keefe, R. S., Silva, S. G., Perkins, D. O., & Lieberman, J. A. (1999). The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: a review and meta-analysis. Schizophrenia Bulletin, 25(2), 201–222.PubMedCrossRefGoogle Scholar
  38. Keefe, R. S., Harvey, P. D., Goldberg, T. E., Gold, J. M., Walker, T. M., Kennel, C., & Hawkins, K. (2008). Norms and standardization of the Brief Assessment of Cognition in Schizophrenia (BACS). Schizophrenia Research, 102(1–3), 108–115. doi:10.1016/j.schres.2008.03.024.PubMedCrossRefGoogle Scholar
  39. Kelsoe, J. R., Jr., Cadet, J. L., Pickar, D., & Weinberger, D. R. (1988). Quantitative neuroanatomy in schizophrenia. A controlled magnetic resonance imaging study. Archives of General Psychiatry, 45(6), 533–541.PubMedCrossRefGoogle Scholar
  40. Killgore, W. D., Glosser, G., Casasanto, D. J., French, J. A., Alsop, D. C., & Detre, J. A. (1999). Functional MRI and the Wada test provide complementary information for predicting post-operative seizure control. Seizure, 8(8), 450–455. doi:10.1053/seiz.1999.0339.PubMedCrossRefGoogle Scholar
  41. Kubicki, M., McCarley, R. W., Nestor, P. G., Huh, T., Kikinis, R., Shenton, M. E., & Wible, C. G. (2003). An fMRI study of semantic processing in men with schizophrenia. NeuroImage, 20(4), 1923–1933.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Leavitt, V. M., & Goldberg, T. E. (2009). Episodic memory in schizophrenia. Neuropsychology Review, 19(3), 312–323. doi:10.1007/s11065-009-9107-0.PubMedCrossRefGoogle Scholar
  43. Lepage, M., Pelletier, M., Achim, A., Montoya, A., Menear, M., & Lal, S. (2010). Parietal cortex and episodic memory retrieval in schizophrenia. Psychiatry Research, 182(3), 191–199. doi:10.1016/j.pscychresns.2010.03.002.PubMedCrossRefGoogle Scholar
  44. Leube, D. T., Rapp, A., Buchkremer, G., Bartels, M., Kircher, T. T., Erb, M., & Grodd, W. (2003). Hippocampal dysfunction during episodic memory encoding in patients with schizophrenia-an fMRI study. Schizophrenia Research, 64(1), 83–85.PubMedCrossRefGoogle Scholar
  45. Maddock, R. J., Garrett, A. S., & Buonocore, M. H. (2001). Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience, 104(3), 667–676.PubMedCrossRefGoogle Scholar
  46. Maddock, R. J., Garrett, A. S., & Buonocore, M. H. (2003). Posterior cingulate cortex activation by emotional words: fMRI evidence from a valence decision task. Human Brain Mapping, 18(1), 30–41. doi:10.1002/hbm.10075.PubMedCrossRefGoogle Scholar
  47. Ongur, D., Cullen, T. J., Wolf, D. H., Rohan, M., Barreira, P., Zalesak, M., & Heckers, S. (2006). The neural basis of relational memory deficits in schizophrenia. Archives of General Psychiatry, 63(4), 356–365. doi:10.1001/archpsyc.63.4.356.PubMedCrossRefGoogle Scholar
  48. Palmer, B. W., Heaton, R. K., Paulsen, J. S., Kuck, J., Braff, D., Harris, M. J., Zisoonk, S., & Jesta, D. V. (1997). Is it possible to be schizophrenic and yet neuropsychologically normal? Neuropsychology, 11, 437–446.PubMedCrossRefGoogle Scholar
  49. Pantelis, C., Velakoulis, D., McGorry, P. D., Wood, S. J., Suckling, J., Phillips, L. J., & McGuire, P. K. (2003). Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet, 361(9354), 281–288. doi:10.1016/S0140-6736(03)12323-9.PubMedCrossRefGoogle Scholar
  50. Ragland, J. D., Gur, R. C., Raz, J., Schroeder, L., Kohler, C. G., Smith, R. J., & Gur, R. E. (2001). Effect of schizophrenia on frontotemporal activity during word encoding and recognition: a PET cerebral blood flow study. The American Journal of Psychiatry, 158(7), 1114–1125.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ragland, J. D., Gur, R. C., Valdez, J., Turetsky, B. I., Elliott, M., Kohler, C., & Gur, R. E. (2004). Event-related fMRI of frontotemporal activity during word encoding and recognition in schizophrenia. The American Journal of Psychiatry, 161(6), 1004–1015.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Ragland, J. D., Laird, A. R., Ranganath, C., Blumenfeld, R. S., Gonzales, S. M., & Glahn, D. C. (2009). Prefrontal activation deficits during episodic memory in schizophrenia. The American Journal of Psychiatry, 166(8), 863–874. doi:10.1176/appi.ajp.2009.08091307.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Ranganath, C. (2010). A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory. Hippocampus, 20(11), 1263–1290. doi:10.1002/hipo.20852.PubMedCrossRefGoogle Scholar
  54. Saykin, A. J., Gur, R. C., Gur, R. E., Mozley, P. D., Mozley, L. H., Resnick, S. M., & Stafiniak, P. (1991). Neuropsychological function in schizophrenia. Selective impairment in memory and learning. Archives of General Psychiatry, 48(7), 618–624.PubMedCrossRefGoogle Scholar
  55. Saykin, A. J., Shtasel, D. L., Gur, R. E., Kester, D. B., Mozley, L. H., Stafiniak, P., & Gur, R. C. (1994). Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Archives of General Psychiatry, 51(2), 124–131.PubMedCrossRefGoogle Scholar
  56. Shallice, T., Fletcher, P., Frith, C. D., Grasby, P., Frackowiak, R. S., & Dolan, R. J. (1994). Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature, 368(6472), 633–635. doi:10.1038/368633a0.PubMedCrossRefGoogle Scholar
  57. Snitz, B. E., Macdonald, A. W., 3rd, & Carter, C. S. (2006). Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes. Schizophrenia Bulletin, 32(1), 179–194. doi:10.1093/schbul/sbi048.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Spaniol, J., Davidson, P. S., Kim, A. S., Han, H., Moscovitch, M., & Grady, C. L. (2009). Event-related fMRI studies of episodic encoding and retrieval: meta-analyses using activation likelihood estimation. Neuropsychologia, 47(8–9), 1765–1779. doi:10.1016/j.neuropsychologia.2009.02.028.PubMedCrossRefGoogle Scholar
  59. Spohn, H. E., & Strauss, M. E. (1989). Relation of neuroleptic and anticholinergic medication to cognitive functions in schizophrenia. Journal of Abnormal Psychology, 98(4), 367–380.PubMedCrossRefGoogle Scholar
  60. Sponheim, S. R., Jung, R. E., Seidman, L. J., Mesholam-Gately, R. I., Manoach, D. S., O’Leary, D. S., & Schulz, S. C. (2010). Cognitive deficits in recent-onset and chronic schizophrenia. Journal of Psychiatric Research, 44(7), 421–428. doi:10.1016/j.jpsychires.2009.09.010.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Stolz, E., Pancholi, K. M., Goradia, D. D., Paul, S., Keshavan, M. S., Nimgaonkar, V. L., & Prasad, K. M. (2012). Brain activation patterns during visual episodic memory processing among first-degree relatives of schizophrenia subjects. NeuroImage, 63(3), 1154–1161. doi:10.1016/j.neuroimage.2012.08.030.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging.Google Scholar
  63. Taylor, M. A., & Abrams, R. (1984). Cognitive impairment in schizophrenia. The American Journal of Psychiatry, 141(2), 196–201.PubMedCrossRefGoogle Scholar
  64. Tracy, J. I., Mattson, R., King, C., Bundick, T., Celenza, M. A., & Glosser, G. (2001). A comparison of memory for verbal and non-verbal material in schizophrenia. Schizophrenia Research, 50(3), 199–211.PubMedCrossRefGoogle Scholar
  65. Tulving, E. (1972). Episodic and semantic memory. New York: Academic Press, Inc.Google Scholar
  66. Tulving, E., Kapur, S., Markowitsch, H. J., Craik, F. I., Habib, R., & Houle, S. (1994). Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition. Proceedings of the National Academy of Sciences of the United States of America, 91(6), 2012–2015.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Wiser, A. K., Andreasen, N. C., O’Leary, D. S., Watkins, G. L., Boles Ponto, L. L., & Hichwa, R. D. (1998). Dysfunctional cortico-cerebellar circuits cause ‘cognitive dysmetria’ in schizophrenia. Neuroreport, 9(8), 1895–1899.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Michael Matthew Francis
    • 1
  • Tom A. Hummer
    • 1
    • 2
  • Jenifer L. Vohs
    • 1
  • Matthew G. Yung
    • 1
  • Emily Liffick
    • 1
  • Nicole F. Mehdiyoun
    • 1
  • Alexander J. Radnovich
    • 1
  • Brenna C. McDonald
    • 2
    • 3
  • Andrew J. Saykin
    • 1
    • 2
    • 3
  • Alan Breier
    • 1
  1. 1.Indiana University Psychotic Disorders Program, Department of PsychiatryIndiana University School of MedicineIndianapolisUSA
  2. 2.Center for Neuroimaging, Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisUSA
  3. 3.Department of NeurologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations