Brain Imaging and Behavior

, Volume 9, Issue 1, pp 89–103 | Cite as

Interacting with the National Database for Autism Research (NDAR) via the LONI Pipeline workflow environment

  • Carinna M. Torgerson
  • Catherine Quinn
  • Ivo Dinov
  • Zhizhong Liu
  • Petros Petrosyan
  • Kevin Pelphrey
  • Christian Haselgrove
  • David N. Kennedy
  • Arthur W. Toga
  • John Darrell Van Horn
SI: Developing Brain

Abstract

Under the umbrella of the National Database for Clinical Trials (NDCT) related to mental illnesses, the National Database for Autism Research (NDAR) seeks to gather, curate, and make openly available neuroimaging data from NIH-funded studies of autism spectrum disorder (ASD). NDAR has recently made its database accessible through the LONI Pipeline workflow design and execution environment to enable large-scale analyses of cortical architecture and function via local, cluster, or “cloud”-based computing resources. This presents a unique opportunity to overcome many of the customary limitations to fostering biomedical neuroimaging as a science of discovery. Providing open access to primary neuroimaging data, workflow methods, and high-performance computing will increase uniformity in data collection protocols, encourage greater reliability of published data, results replication, and broaden the range of researchers now able to perform larger studies than ever before. To illustrate the use of NDAR and LONI Pipeline for performing several commonly performed neuroimaging processing steps and analyses, this paper presents example workflows useful for ASD neuroimaging researchers seeking to begin using this valuable combination of online data and computational resources. We discuss the utility of such database and workflow processing interactivity as a motivation for the sharing of additional primary data in ASD research and elsewhere.

Keywords

Autism spectrum disorder Neuroimaging Workflows Brain structure Functional MRI diffusion imaging Provenance 

References

  1. Assaf, M., Jagannathan, K., Calhoun, V. D., Miller, L., Stevens, M. C., Sahl, R., O’Boyle, J. G., Schultz, R. T., & Pearlson, G. D. (2010). Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. NeuroImage, 53(1), 247–256.CrossRefPubMedCentralPubMedGoogle Scholar
  2. Atkinson, J., & Braddick, O. (2011). From genes to brain development to phenotypic behavior: “dorsal-stream vulnerability” in relation to spatial cognition, attention, and planning of actions in Williams syndrome (WS) and other developmental disorders. Progress in Brain Research, 189, 261–283.CrossRefPubMedGoogle Scholar
  3. Beckmann, C. F., & Smith, S. M. (2004). Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Transactions on Medical Imaging, 23(2), 137–152.CrossRefPubMedGoogle Scholar
  4. Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 360(1457), 1001–1013.CrossRefPubMedCentralPubMedGoogle Scholar
  5. Billeci, L., Calderoni, S., Tosetti, M., Catani, M., & Muratori, F. (2012). White matter connectivity in children with autism spectrum disorders: a tract-based spatial statistics study. BMC Neurology, 12, 148.CrossRefPubMedCentralPubMedGoogle Scholar
  6. Breeze, J. L., Poline, J. B., & Kennedy, D. N. (2012). Data sharing and publishing in the field of neuroimaging. Gigascience, 1(1), 9.CrossRefPubMedCentralPubMedGoogle Scholar
  7. Cody, H., Pelphrey, K., & Piven, J. (2002). Structural and functional magnetic resonance imaging of autism. International Journal of Developmental Neuroscience, 20(3–5), 421–438.CrossRefPubMedGoogle Scholar
  8. Delmonte, S., Gallagher, L., O’Hanlon, E., McGrath, J., & Balsters, J. H. (2013). Functional and structural connectivity of frontostriatal circuitry in Autism Spectrum Disorder. Frontiers in Human Neuroscience, 7, 430.CrossRefPubMedCentralPubMedGoogle Scholar
  9. Dinov, I. D., Van Horn, J. D., Lozev, K. M., Magsipoc, R., Petrosyan, P., Liu, Z., MacKenzie-Graham, A., Eggert, P., Parker, D. S., & Toga, A. W. (2009). Efficient, distributed and interactive neuroimaging data analysis using the LONI pipeline. Frontiers in Neuroinformatics, 3.Google Scholar
  10. Dinov, I., Lozev, K., Petrosyan, P., Liu, Z., Eggert, P., Pierce, J., Zamanyan, A., Chakrapani, S., Van Horn, J., Parker, D. S., Magsipoc, R., Leung, K., Gutman, B., Woods, R., & Toga, A. (2010). Neuroimaging study designs, computational analyses and data provenance using the LONI pipeline. PLoS ONE, 5(9).Google Scholar
  11. Doyle-Thomas, K. A., Kushki, A., Duerden, E. G., Taylor, M. J., Lerch, J. P., Soorya, L. V., Wang, A. T., Fan, J., & Anagnostou, E. (2013). The effect of diagnosis, age, and symptom severity on cortical surface area in the cingulate cortex and insula in autism spectrum disorders. Journal of Child Neurology, 28(6), 732–739.CrossRefPubMedGoogle Scholar
  12. Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., & Ghosh, S. S. (2011). Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in Neuroinformatics, 5, 13.CrossRefPubMedCentralPubMedGoogle Scholar
  13. Hall, D., Huerta, M. F., McAuliffe, M. J., & Farber, G. K. (2012). Sharing heterogeneous data: the national database for autism research. Neuroinformatics, 10(4), 331–339.CrossRefPubMedCentralPubMedGoogle Scholar
  14. Insel, T. R., Volkow, N. D., Landis, S. C., Li, T. K., Battey, J. F., & Sieving, P. (2004). Limits to growth: why neuroscience needs large-scale science. Nature Neuroscience, 7(5), 426–427.CrossRefPubMedGoogle Scholar
  15. Kennedy, D. N. (2012). The benefits of preparing data for sharing even when you don’t. Neuroinformatics, 10(3), 223–224.CrossRefPubMedGoogle Scholar
  16. LaConte, S., Anderson, J., Muley, S., Ashe, J., Frutiger, S., Rehm, K., Hansen, L. K., Yacoub, E., Hu, X., Rottenberg, D., & Strother, S. (2003). The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics. NeuroImage, 18(1), 10–27.CrossRefPubMedGoogle Scholar
  17. Leung, K., Parker, D. S., Cunha, A., Dinov, I. D. and Toga, A. W. (2008). IRMA: an image registration meta-algorithm - evaluating alternative algorithms with multiple metrics. SSDBM.Google Scholar
  18. Luo, X.-Z. J., Kennedy, D. N., & Cohen, Z. (2009). Neuroimaging informatics tools and resources clearinghouse (NITRC) resource announcement. Neuroinformatics, 7(1), 55–56.CrossRefPubMedGoogle Scholar
  19. MacKenzie-Graham, A., Payan, A., Dinov, I., Van Horn, J. D., & Toga, A. W. (2008a). Neuroimaging data provenance using the LONI pipeline workflow environment. Provenance and annotation of data international provenance and annotation workshop, IPAW 2008. Salt Lake City: University of Utah.Google Scholar
  20. Mackenzie-Graham, A. J., Van Horn, J. D., Woods, R. P., Crawford, K. L., & Toga, A. W. (2008b). Provenance in neuroimaging. NeuroImage, 42(1), 178–195.CrossRefPubMedCentralPubMedGoogle Scholar
  21. Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T., Simpson, G., Pike, B., Holmes, C., Collins, L., Thompson, P., MacDonald, D., Iacoboni, M., Schormann, T., Amunts, K., Palomero-Gallagher, N., Geyer, S., Parsons, L., Narr, K., Kabani, N., Le Goualher, G., Feidler, J., Smith, K., Boomsma, D., Pol, H. H., Cannon, T., Kawashima, R., & Mazoyer, B. (2001). A four-dimensional probabilistic atlas of the human brain. Journal of the American Medical Informatics Association, 8(5), 401–430.CrossRefPubMedCentralPubMedGoogle Scholar
  22. McPartland, J. C., Coffman, M., & Pelphrey, K. A. (2011). Recent advances in understanding the neural bases of autism spectrum disorder. Current Opinion in Pediatrics, 23(6), 628–632.CrossRefPubMedCentralPubMedGoogle Scholar
  23. Mori, S., & van Zijl, P. C. (2002). Fiber tracking: principles and strategies - a technical review. NMR in Biomedicine, 15(7–8), 468–480.CrossRefPubMedGoogle Scholar
  24. National Autism Center (2011). Evidence-based practice and Autism in the schools. Randolph.Google Scholar
  25. Nebel, M.B., Joel, S.E., Muschelli, J., Barber, A.D., Caffo, B.S., Pekar, J.J. and Mostofsky, S.H. (2012). Disruption of functional organization within the primary motor cortex in children with autism. Human Brain Mappang.Google Scholar
  26. Pelphrey, K. A., Morris, J. P., & McCarthy, G. (2005). Neural basis of eye gaze processing deficits in autism. Brain, 128(Pt 5), 1038–1048.CrossRefPubMedGoogle Scholar
  27. Pelphrey, K. A., Morris, J. P., McCarthy, G., & Labar, K. S. (2007). Perception of dynamic changes in facial affect and identity in autism. Social Cognitive and Affective Neuroscience, 2(2), 140–149.CrossRefPubMedCentralPubMedGoogle Scholar
  28. Poline, J. B., Breeze, J. L., Ghosh, S., Gorgolewski, K., Halchenko, Y. O., Hanke, M., Haselgrove, C., Helmer, K. G., Keator, D. B., Marcus, D. S., Poldrack, R. A., Schwartz, Y., Ashburner, J., & Kennedy, D. N. (2012). Data sharing in neuroimaging research. Frontiers in Neuroinformatics, 6, 9.CrossRefPubMedCentralPubMedGoogle Scholar
  29. Redcay, E., Moran, J. M., Mavros, P. L., Tager-Flusberg, H., Gabrieli, J. D., & Whitfield-Gabrieli, S. (2013). Intrinsic functional network organization in high-functioning adolescents with autism spectrum disorder. Frontiers in Human Neuroscience, 7, 573.CrossRefPubMedCentralPubMedGoogle Scholar
  30. Rex, D. E., Shattuck, D. W., Woods, R. P., Narr, K. L., Luders, E., Rehm, K., Stolzner, S. E., Rottenberg, D. E., & Toga, A. W. (2004). A meta-algorithm for brain extraction in MRI. NeuroImage, 23(2), 625–637.CrossRefPubMedGoogle Scholar
  31. Shattuck, D. W., & Leahy, R. M. (2002). BrainSuite: an automated cortical surface identification tool. Medical Image Analysis, 6(2), 129–142.CrossRefPubMedGoogle Scholar
  32. Shattuck, D.W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K.L., Poldrack, R.A., Bilder, R.M. and Toga, A.W. (2007). Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage.Google Scholar
  33. Shokouhi, M., Williams, J. H., Waiter, G. D., & Condon, B. (2012). Changes in the sulcal size associated with autism spectrum disorder revealed by sulcal morphometry. Autism Research, 5(4), 245–252.CrossRefPubMedGoogle Scholar
  34. Stef-Praun, T., Clifford, B., Foster, I., Hasson, U., Hategan, M., Small, S. L., Wilde, M., & Zhao, Y. (2007). Accelerating medical research using the swift workflow system. Studies in Health Technology and Informatics, 126, 207–216.PubMedCentralPubMedGoogle Scholar
  35. Strother, S. C., Anderson, J., Hansen, L. K., Kjems, U., Kustra, R., Sidtis, J., Frutiger, S., Muley, S., LaConte, S., & Rottenberg, D. (2002). The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework. NeuroImage, 15(4), 747–771.CrossRefPubMedGoogle Scholar
  36. Tu, Z., & Toga, A. W. (2007). Towards whole brain segmentation by a hybrid model. Medical Image Computing and Computer-Assisted Intervention International Conference on Medical Image Computing and Computer-Assisted Intervention, 10(Pt 2), 169–177.Google Scholar
  37. Tu, Z., Zheng, S., Yuille, A. L., Reiss, A. L., Dutton, R. A., Lee, A. D., Galaburda, A. M., Dinov, I., Thompson, P. M., & Toga, A. W. (2007). Automated extraction of the cortical sulci based on a supervised learning approach. IEEE Transactions on Medical Imaging, 26(4), 541–552.CrossRefPubMedGoogle Scholar
  38. Van Horn, J. D., Grethe, J. S., Kostelec, P., Woodward, J. B., Aslam, J. A., Rus, D., Rockmore, D., & Gazzaniga, M. S. (2001). The Functional Magnetic Resonance Imaging Data Center (fMRIDC): the challenges and rewards of large-scale databasing of neuroimaging studies. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1412), 1323–1339.CrossRefPubMedCentralPubMedGoogle Scholar
  39. Van Horn, J.D., Dobson, J., Woodward, J., Wilde, M., Zhao, Y, Voeckler, J. and Foster, I. (2006). Grid-based computing and the future of neuroscience computation. Methods in mind. C. Senior, T. Russell; M. S. Gazzaniga (141–170). MIT Press: Cambridge.Google Scholar
  40. von dem Hagen, E. A., Stoyanova, R. S., Baron-Cohen, S., & Calder, A. J. (2013). Reduced functional connectivity within and between ‘social’ resting state networks in autism spectrum conditions. Social Cognitive and Affective Neuroscience, 8(6), 694–701.CrossRefGoogle Scholar
  41. Wallace, G. L., Robustelli, B., Dankner, N., Kenworthy, L., Giedd, J. N., & Martin, A. (2013). Increased gyrification, but comparable surface area in adolescents with autism spectrum disorders. Brain, 136(Pt 6), 1956–1967.CrossRefPubMedCentralPubMedGoogle Scholar
  42. Woods, R. P., Grafton, S. T., Holmes, C. J., Cherry, S. R., & Mazziotta, J. C. (1998a). Automated image registration: I. General methods and intrasubject, intramodality validation. Journal of Computer Assisted Tomography, 22(1), 139–152.CrossRefPubMedGoogle Scholar
  43. Woods, R. P., Grafton, S. T., Watson, J. D., Sicotte, N. L., & Mazziotta, J. C. (1998b). Automated image registration: II. Intersubject validation of linear and nonlinear models. Journal of Computer Assisted Tomography, 22(1), 153–165.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Carinna M. Torgerson
    • 1
  • Catherine Quinn
    • 1
  • Ivo Dinov
    • 2
  • Zhizhong Liu
    • 1
  • Petros Petrosyan
    • 1
  • Kevin Pelphrey
    • 3
  • Christian Haselgrove
    • 4
  • David N. Kennedy
    • 4
  • Arthur W. Toga
    • 1
  • John Darrell Van Horn
    • 1
  1. 1.Laboratory of Neuro Imaging and The Institute for Neuroimaging and Informatics, Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.University of Michigan School of NursingAnn ArborUSA
  3. 3.Yale School of MedicineYale Child Study CenterNew HavenUSA
  4. 4.Department of PsychiatryUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations