Brain Imaging and Behavior

, Volume 9, Issue 4, pp 848–853 | Cite as

MRI scanner environment increases pain perception in a standardized nociceptive paradigm

  • Isabel Ellerbrock
  • Arne May
Original Research


Functional magnetic resonance imaging (MRI) has been widely used in neuroscientific studies to investigate neural correlates of perception and higher cognitive functions. Early on, the MR-scanning procedure itself has been identified to create discomfort and anxiety in some individuals, which may influence task performance and perception. The present study analyzed behavioral differences in pain intensity ratings obtained in two distinct situations: MR environment and laboratory setting. Within our longitudinal study design twenty healthy volunteers were exposed daily to an identical paradigm consisting of 60 repeated noxious heat stimuli (46 °C) on 21 consecutive days. After each block of ten stimuli, participants were prompted to rate pain intensity on a visual analog scale (VAS). On days 1, 8, 14, and 21 ratings scores were obtained during a functional imaging scan, whereas on the remaining days the sessions were conducted in a laboratory. It has come to our attention that pain intensity ratings acquired in MR environment were significantly higher than behavioral data collected in the lab setting. Given that the stimuli were standardized and no task or distraction confounded the ratings, it is likely that the attentional focus on noxious stimulation was identical in both conditions. It seems that the highly artificial scanner environment as such is sufficient to increase awareness/alertness. Given that salience rather than pure nociceptive input has been suggested to explain functional imaging results in painful conditions, these findings highlight concerns regarding the comparability of behavioral data assembled across inconsistent settings.


Pain MRI environment Arousal Attention 



This work has been supported by the German Research Foundation (DFG), SFB 936/A5.

Conflict of interest

The authors declare no conflicts of interests.


  1. Arntz, A., Dreessen, L., & Merckelbach, H. (1991). Attention, not anxiety, influences pain. Behaviour Research and Therapy, 29(1), 41–50. doi: 10.1016/S0005-7967(09)80006-5.CrossRefPubMedGoogle Scholar
  2. Arntz, A., Dreessen, L., & De Jong, P. (1994). The influence of anxiety on pain: attentional and attributional mediators. Pain, 56(3), 307–314. doi: 10.1016/0304-3959(94)90169-4.CrossRefPubMedGoogle Scholar
  3. Bantick, S. J., Wise, R. G., Ploghaus, A., Clare, S., Smith, S. M., & Tracey, I. (2002). Imaging how attention modulates pain in humans using functional MRI. Brain, 125(2), 310–319. doi: 10.1093/brain/awf022.CrossRefPubMedGoogle Scholar
  4. Brennan, S., Redd, W., Jacobsen, P., Schorr, O., Heelan, R., Sze, G., & Morrissey, J. (1988). Anxiety and panic during magnetic resonance scans. Lancet, 332(8609), 512. doi: 10.1016/S0140-6736(88)90159-6.CrossRefGoogle Scholar
  5. Chapman, H. A., Bernier, D., & Rusak, B. (2010). MRI-related anxiety levels change within and between repeated scanning sessions. Psychiatry Research: Neuroimaging, 182(2), 160–164. doi: 10.1016/j.pscychresns.2010.01.005.CrossRefPubMedGoogle Scholar
  6. Crombez, G., Van Ryckeghem, D. M. L., Eccleston, C., & Van Damme, S. (2013). Attentional bias to pain-related information: a meta-analysis. Pain, 154(4), 497–510. doi: 10.1016/j.pain.2012.11.013.CrossRefPubMedGoogle Scholar
  7. Eccleston, C., & Crombez, G. (1999). Pain demands attention: a cognitive-affective model of the interruptive function of pain. Psychological Bulletin, 125(3), 356–366.CrossRefPubMedGoogle Scholar
  8. Grey, S. J., Price, G., & Mathews, A. (2000). Reduction of anxiety during MR imaging: a controlled trial. Magnetic Resonance Imaging, 18(3), 351–355. doi: 10.1016/S0730-725X(00)00112-0.CrossRefPubMedGoogle Scholar
  9. Hodes, R. L., Rowland, E. W., Lightfoot, N., & Cleeland, C. S. (1990). The effects of distraction on responses to cold pressor pain. Pain, 41(1), 109–114. doi: 10.1016/0304-3959(90)91115-Y.CrossRefPubMedGoogle Scholar
  10. Iannetti, G. D., & Mouraux, A. (2010). From the neuromatrix to the pain matrix (and back). Experimental Brain Research, 205(1), 1–12. doi: 10.1007/s00221-010-2340-1.CrossRefPubMedGoogle Scholar
  11. Katz, R. C., Wilson, L., & Frazer, N. (1994). Anxiety and its determinants in patients undergoing magnetic resonance imaging. Journal of Behavior Therapy and Experimental Psychiatry, 25(2), 131–134.CrossRefPubMedGoogle Scholar
  12. Laux, L., Glanzmann, P., Schaffner, P., & Spielberger, C. D. (1981). State-Trait-Angstinventar (STAI). Theoretische Grundlagen und Handanweisung. Weinheim: Beltz.Google Scholar
  13. Lueken, U., Muehlhan, M., Evens, R., Wittchen, H.-U., & Kirschbaum, C. (2012). Within and between session changes in subjective and neuroendocrine stress parameters during magnetic resonance imaging: a controlled scanner training study. Psychoneuroendocrinology, 37(8), 1299–1308. doi: 10.1016/j.psyneuen.2012.01.003.CrossRefPubMedGoogle Scholar
  14. May, A., Rodriguez-Raecke, R., Schulte, A., Ihle, K., Breimhorst, M., Birklein, F., & Jürgens, T. P. (2012). Within-session sensitization and between-session habituation: a robust physiological response to repetitive painful heat stimulation. European Journal of Pain (London, England), 16(3), 401–409. doi: 10.1002/j.1532-2149.2011.00023.x.CrossRefGoogle Scholar
  15. McIsaac, H. K., Thordarson, D. S., Shafran, R., Rachman, S., & Poole, G. (1998). Claustrophobia and the magnetic resonance imaging procedure. Journal of Behavioral Medicine, 21(3), 255–268.CrossRefPubMedGoogle Scholar
  16. Meléndez, J. C., & McCrank, E. (1993). Anxiety-related reactions associated with magnetic resonance imaging examinations. JAMA, the Journal of the American Medical Association, 270(6), 745–747.CrossRefPubMedGoogle Scholar
  17. Muehlhan, M., Lueken, U., Wittchen, H.-U., & Kirschbaum, C. (2011). The scanner as a stressor: evidence from subjective and neuroendocrine stress parameters in the time course of a functional magnetic resonance imaging session. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 79(2), 118–126. doi: 10.1016/j.ijpsycho.2010.09.009.CrossRefGoogle Scholar
  18. Munn, Z., & Jordan, Z. (2011). The patient experience of high technology medical imaging: a systematic review of the qualitative evidence. Radiography, 17(4), 323–331. doi: 10.1016/j.radi.2011.06.004.CrossRefGoogle Scholar
  19. Peters, S., Cleare, A. J., Papadopoulos, A., & Fu, C. H. Y. (2011). Cortisol responses to serial MRI scans in healthy adults and in depression. Psychoneuroendocrinology, 36(5), 737–741. doi: 10.1016/j.psyneuen.2010.10.009.CrossRefPubMedGoogle Scholar
  20. Quirk, M. E., Letendre, A. J., Ciottone, R. A., & Lingley, J. F. (1989). Anxiety in patients undergoing MR imaging. Radiology, 170(2), 463–466. doi: 10.1148/radiology.170.2.2911670.CrossRefPubMedGoogle Scholar
  21. Rossi, V., & Pourtois, G. (2012). Transient state-dependent fluctuations in anxiety measured using STAI, POMS, PANAS or VAS: a comparative review. Anxiety, Stress & Coping, 25(6), 603–645. doi: 10.1080/10615806.2011.582948.CrossRefGoogle Scholar
  22. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356. doi: 10.1523/JNEUROSCI.5587-06.2007.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Sterzer, P., & Kleinschmidt, A. (2010). Anterior insula activations in perceptual paradigms: often observed but barely understood. Brain Structure & Function, 214(5–6), 611–622. doi: 10.1007/s00429-010-0252-2.CrossRefGoogle Scholar
  24. Tessner, K. D., Walker, E. F., Hochman, K., & Hamann, S. (2006). Cortisol responses of healthy volunteers undergoing magnetic resonance imaging. Human Brain Mapping, 27(11), 889–895. doi: 10.1002/hbm.20229.CrossRefPubMedGoogle Scholar
  25. Tischler, V., Calton, T., Williams, M., & Cheetham, A. (2008). Patient anxiety in magnetic resonance imaging centres: is further intervention needed? Radiography, 14(3), 265–266. doi: 10.1016/j.radi.2007.09.007.CrossRefGoogle Scholar
  26. Törnqvist, E., Månsson, A., Larsson, E.-M., & Hallström, I. (2006). It’s like being in another world–patients’ lived experience of magnetic resonance imaging. Journal of Clinical Nursing, 15(8), 954–961. doi: 10.1111/j.1365-2702.2006.01499.x.CrossRefPubMedGoogle Scholar
  27. Verhoeven, K., Crombez, G., Eccleston, C., Van Ryckeghem, D. M. L., Morley, S., & Van Damme, S. (2010). The role of motivation in distracting attention away from pain: an experimental study. Pain, 149(2), 229–234. doi: 10.1016/j.pain.2010.01.019.CrossRefPubMedGoogle Scholar
  28. Yoshida, W., Seymour, B., Koltzenburg, M., & Dolan, R. J. (2013). Uncertainty increases pain: evidence for a novel mechanism of pain modulation involving the periaqueductal gray. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(13), 5638–5646. doi: 10.1523/JNEUROSCI. 4984-12.2013.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Systems NeuroscienceUniversity Medical Centre Hamburg-EppendorfHamburgGermany

Personalised recommendations