Advertisement

Brain Imaging and Behavior

, Volume 9, Issue 4, pp 765–775 | Cite as

Fiber bundle length and cognition: a length-based tractography MRI study

  • Ashley M. Behrman-LayEmail author
  • Christina Usher
  • Thomas E. Conturo
  • Stephen Correia
  • David H. Laidlaw
  • Elizabeth M. Lane
  • Jacob Bolzenius
  • Jodi M. Heaps
  • Lauren E. Salminen
  • Laurie M. Baker
  • Ryan Cabeen
  • Erbil Akbudak
  • Xi Luo
  • Peisi Yan
  • Robert H. Paul
Original Research

Abstract

Executive function (EF) and cognitive processing speed (CPS) are two cognitive performance domains that decline with advanced age. Reduced EF and CPS are known to correlate with age-related frontal-lobe volume loss. However, it remains unclear whether white matter microstructure in these regions is associated with age-related decline in EF and/or CPS. We utilized quantitative tractography metrics derived from diffusion-tensor MRI to investigate the relationship between the mean fiber bundle lengths (FBLs) projecting to different lobes, and EF/CPS performance in 73 healthy aging adults. We measured aspects of EF and CPS with the Trail Making Test (TMT), Color-Word Interference Test, Letter-Number Sequencing (L-N Seq), and Symbol Coding. Results revealed that parietal and occipital FBLs explained a significant portion of variance in EF. Frontal, temporal, and occipital FBLs explained a significant portion of variance in CPS. Shorter occipital FBLs were associated with poorer performance on the EF tests TMT-B and CWIT 3. Shorter frontal, parietal, and occipital FBLs were associated with poorer performance on L-N Seq and Symbol Coding. Shorter frontal and temporal FBLs were associated with lower performance on CPS tests TMT-A and CWIT 1. Shorter FBLs were also associated with increased age. Results suggest an age-related FBL shortening in specific brain regions related to poorer EF and CPS performance among older adults. Overall, results support both the frontal aging hypothesis and processing speed theory, suggesting that each mechanism is contributing to age-related cognitive decline.

Keywords

Fiber bundle lengths DTI White matter Cognitive processing speed Executive function Aging 

Notes

Acknowledgments

This study was supported by the following grants: NIH/NINDS grant numbers R01 NS052470 and R01 NS039538, NIH/NIMH grant number R21 MH090494. Recruitment database searches were supported in part by NIH/NCRR grant UL1 TR000448.

Conflict of interest

Ashley M. Behrman-Lay, Christina Usher, Thomas E. Conturo, Stephan Correia, David H. Laidlaw, Elizabeth M. Lane, Jacob Bolzenius, Jodi M. Heaps, Lauren E. Salminen, Laurie M. Baker, Ryan Cabeen, Erbil Akbudak, Xi Luo, Peisi Yan, and Robert H. Paul declare that they have no actual or potential conflicts of interest on this manuscript.

Supplementary material

11682_2014_9334_MOESM1_ESM.docx (109 kb)
ESM 1 (DOCX 109 kb)
11682_2014_9334_MOESM2_ESM.docx (33 kb)
ESM 2 (DOCX 33 kb)

References

  1. Albinet, C. T., Boucard, G., Bouquet, C., & Audiffren, M. (2012). Processing speed and executive functions in cognitive aging: How to disentangle their mutual relationship? Brain and Cognition, 79(1), 1–11.CrossRefPubMedGoogle Scholar
  2. Allen, J. S., Bruss, J., Brown, C. K., & Damasio, H. (2005). Normal neuroanatomical variation due to age: The major lobes and a parcellation of the temporal region. Neurobiology of Aging, 26(9), 1245–1260.CrossRefPubMedGoogle Scholar
  3. Baker, L. M., Laidlaw, D. H., Conturo, T. E., Hogan, J., Zhao, Y., Luo, X., et al. (2014). White matter changes with age utilizing quantitative diffusion MRI. Neurology, 83(3), 247–252.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Bartzokis, G. (2004). Age-related myelin breaksown: A developmental model of cognitive decline and Alzheimer’s disease. Neurobiology of Aging, 25, 5–18.CrossRefPubMedGoogle Scholar
  5. Bartzokis, G., Beckson, M., Neuechterlein, K. H., Edwards, N., & Mintz, J. (2001). Age-related changes in frontal and temporal lobe volumes in men: A magnetic resonance imaging study. Archives of General Psychiatry, 58(5), 461–465.CrossRefPubMedGoogle Scholar
  6. Bartzokis, G., Cummings, J. L., Sultzer, D., Henderson, V. W., Nuechterlein, K. H., & Mintz, J. (2003). White matter structural integrity in healthy aging adults and patients with Alzheimer’s disease: A magnetic resonance imaging study. Archives of Neurology, 60(3), 393–398.CrossRefPubMedGoogle Scholar
  7. Bartzokis, G., Lu, P. H., Geschwind, D. H., Tingus, K., Huang, D., Mendez, M. F., et al. (2007). Apolipoprotein E affects both myelin breakdown and cognition: Implications for age-related trajectories of decline into dementia. Biological Psychiatry, 62(12), 1380–1387.CrossRefPubMedGoogle Scholar
  8. Behrens, T. E., Johansen-Berg, H., Woolrich, M. W., Smith, S. M., Wheeler-Kingshott, C. A., Boulby, P. A., et al. (2003). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6, 750–757.CrossRefPubMedGoogle Scholar
  9. Bennett, I. J., Madden, D. J., Vaidya, C. J., Howard, D. V., & Howard, J. H., Jr. (2010). Age-related differences in multiple measures of white matter integrity: A diffusion tensor imaging study of healthy aging. Human Brain Mapping, 31(3), 378–390.PubMedCentralPubMedGoogle Scholar
  10. Bolzenius, J. D., Laidlaw, D. H., Cabeen, R. P., Conturo, T. E., McMichael, A. R., Lane, E. M., et al. (2013). Impact of body mass index on neuronal fiber bundle lengths among healthy older adults. Brain Imaging and Behavior, 7(3), 300–306.CrossRefPubMedGoogle Scholar
  11. Brickman, A. M., Zimmerman, M. E., Paul, R. H., Grieve, S. M., Tate, D. F., Cohen, R. A., et al. (2006). Regional white matter and neuropsychological functioning across the adult lifespan. Biological Psychiatry, 60(5), 444–453.CrossRefPubMedGoogle Scholar
  12. Bugg, J. M., Zook, N. A., DeLosh, E. L., Davalos, D. B., & Davis, H. P. (2006). Age differences in fluid intelligence: Contributions of general slowing and frontal decline. Brain and Cognition, 62(1), 9–16.CrossRefPubMedGoogle Scholar
  13. Charlton, R. A., Barrick, T. R., McIntyre, D. J., Shen, Y., O’Sullivan, M., Howe, F. A., et al. (2006). White matter damage on diffusion tensor imaging correlates with age-related cognitive decline. Neurology, 66(2), 217–222.CrossRefPubMedGoogle Scholar
  14. Charlton, R. A., Landau, S., Schiavone, F., Barrick, T. R., Clark, C. A., Markus, H. S., et al. (2008). A structural equation modeling investigation of age-related variance in executive function and DTI measured white matter damage. Neurobiology of Aging, 29(10), 1547–1555.CrossRefPubMedGoogle Scholar
  15. Conturo, T. E., McKinstry, R. C., Akbudak, E., & Robinson, B. H. (1996). Encoding of anisotropic diffusion with tetrahedral gradients: a general mathematical diffusion formalism and experimental results. Magnetic Resonance in Medicine, 35, 399–412.CrossRefPubMedGoogle Scholar
  16. Conturo, T. E., Lori, N. F., Cull, T. S., Akbudak, E., Snyder, A. Z., Shimony, J. S., et al. (1999). Tracking neuronal fiber pathways in the living human brain. Proceedings of the National Academy of Sciences of the United States of American, 96(18), 10422–10427.CrossRefGoogle Scholar
  17. Correia, S., Lee, S. Y., Voorn, T., Tate, D. F., Paul, R. H., Zhang, S., et al. (2008). Quantitative tractography metrics of white matter integrity in diffusion-tensor MRI. NeuroImage, 42(2), 568–581.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Cowell, P. E., Turetsky, B. I., Gur, R. C., Grossman, R. I., Shtasel, D. L., & Gur, R. E. (1994). Sex differences in aging of the human frontal and temporal lobes. The Journal of Neuroscience, 14(8), 4748–4755.PubMedGoogle Scholar
  19. Dempster, F. N. (1992). The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive-development and aging. Developmental Review, 12, 45–75.CrossRefGoogle Scholar
  20. Duering, M., Zieren, N., Hervé, D., Jouvent, E., Reyes, S., Peters, N., et al. (2011). Strategic role of frontal white matter tracts in vascular cognitive impairment: A voxel-based lesion-symptom mapping study in CADASIL. Brain, 134(Pt 8), 2366–2375.CrossRefPubMedGoogle Scholar
  21. Fields, R. D. (2008). White matter in learning, cognition and psychiatric disorders. Trends in Neuroscience, 31(7), 361–370.CrossRefGoogle Scholar
  22. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.CrossRefPubMedGoogle Scholar
  23. Fuster, J. M., Baurer, R. H., & Jervey, J. P. (1985). Functional interactions between the inferotemporal and prefrontal cortex in a cognitive task. Brain Research, 330(2), 299–307.CrossRefPubMedGoogle Scholar
  24. Greenwood, P. M. (2000). The frontal aging hypothesis evaluated. Journal of the International Neuropsychological Society, 6(6), 705–726.CrossRefPubMedGoogle Scholar
  25. Guttman, C. R., Jolesz, F. A., Kikinis, R., Killiany, R. J., Moss, M. B., Sandor, T., et al. (1998). White matter changes with normal aging. Neurology, 50(4), 972–978.CrossRefGoogle Scholar
  26. Jacobs, H. I., Leritz, E. C., Williams, V. J., Van Boxel, M. P., van der Elst, W., Jolles, J., et al. (2013). Association between white matter microstructure, executive functions, and processing speed in older adults: The impact of vascular health. Human Brain Mapping, 34(1), 77–95.CrossRefPubMedGoogle Scholar
  27. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841.CrossRefPubMedGoogle Scholar
  28. Jernigan, T. L., Archibald, S. L., Fennema-Notestine, C., Gamst, A. C., Stout, J. C., Bonner, J., et al. (2001). Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiology of Aging, 22(4), 581–594.CrossRefPubMedGoogle Scholar
  29. Lee, T., Mosing, M. A., Henry, J. D., Trollor, J. N., Lammel, A., Ames, D., et al. (2012). Genetic influences on five measures of processing speed and their covariation with general cognitive ability in the elderly: The older Australian twins study. Behavior Genetics, 42(1), 96–106.CrossRefPubMedGoogle Scholar
  30. Lori, N. F., Akbudak, E., Shimony, J. S., Cull, T. S., Synder, A. Z., Guillory, R. K., et al. (2002). Diffusion tensor fiber tracking of human brain connectivity: Acquisition methods, reliability analysis and biological results. NMR in Biomedicine, 15(7–8), 494–515.CrossRefPubMedGoogle Scholar
  31. Lu, P. H., Lee, G. J., Tishler, T. A., Meghpara, M., Thompson, P. M., & Bartzokis, G. (2013). Myelin breakdown mediates age-related slowing in cognitive processing speed in healthy older men. Brain and Cognition, 81(1), 131–138.CrossRefPubMedGoogle Scholar
  32. Madden, D. J., Bennett, I. J., & Song, A. W. (2009). Cerebral white matter integrity and cognitive aging: Contributions from diffusion tensor imaging. Neuropsychology Review, 19(4), 415–435.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Madden, D. J., Spaniol, J., Costello, M. C., Bucur, B., White, L. E., Cabeza, R., et al. (2009). Cerebral white matter integrity mediates adult age differences in cognitive performance. Journal of Cognitive Neuroscience, 21(2), 289–302.PubMedCentralCrossRefPubMedGoogle Scholar
  34. Marner, L., Nyengaard, J. R., Tang, Y., & Pakkenberg, B. (2003). Marked loss of myelinated nerve fibers in the human brain with age. Journal of Comparative Neurology, 462(2), 144–152.CrossRefPubMedGoogle Scholar
  35. Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., et al. (2001). A probabilistic atlas and reference system for the human brain: International Consortium for brain mapping (ICBM). Philosophical Transactions of The Royal Society Biological Sciences, 356(1412), 1293–1322.PubMedCentralCrossRefPubMedGoogle Scholar
  36. McDowell, I., Xi, G., Lindsay, J., & Tukko, H. (2004). Canadian study of health and aging: Study description and patterns of early cognitive decline. Aging, Neuropsychology, and Cognition, 11, 149–168.CrossRefGoogle Scholar
  37. Meier-Ruge, W., Ulrich, J., Brühlmann, M., & Meier, E. (1992). Age-related white matter atrophy in the human brain. Annals of the New York Academy of Sciences, 673, 260–269.CrossRefPubMedGoogle Scholar
  38. Mori, S., Crain, B. J., Chacko, V. P., & Van Zijl, P. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45, 265–269.CrossRefPubMedGoogle Scholar
  39. Moscovitch, M., & Winocur, G. (1992). The neuropsychology of memory and aging. In F. I. M. Craik & T. A. Salthouse (Eds.), The Handbook of Aging and Cognition (pp. 315–372). New Jersey: Erlbaum.Google Scholar
  40. Mosely, M. (2002). Diffusion tensor imaging and aging – a review. NMR in Biomedicine, 15(7–8), 535–560.Google Scholar
  41. Nucifora, P. G., Verma, R., Lee, S. K., & Melhem, E. R. (2007). Diffusion-Tensor MR imaging and tractography: Exploring brain microstructure and connectivity. Radiology, 245(2), 367–384.CrossRefPubMedGoogle Scholar
  42. O’Sullivan, M., Jones, D. K., Summers, P. E., Morris, R. G., Williams, S. C., & Markus, H. S. (2001). Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology, 57(4), 632–638.CrossRefPubMedGoogle Scholar
  43. Paul, R., Lane, E. M., Tate, D. F., Heaps, J., Romo, D. M., Akbudak, E., et al. (2011). Neuroimaging signatures and cognitive correlates of the montreal cognitive assessment screen in a nonclinical elderly sample. Archives of Clinical Neuropsychology, 26(5), 454–460.PubMedCentralCrossRefPubMedGoogle Scholar
  44. Perry, M. E., McDonald, C. R., Hagler, D. J., Jr., Gharapetian, L., Kuperman, J. M., Koyama, A. K., et al. (2009). White matter tracts assocated with set-shifting in healthy aging. Neuropsychologia, 47(13), 2835–2842.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Peters, B. D., Ikuta, T., DeRosse, P., John, M., Burdick, K. E., Gruner, P., et al. (2014). Age-related differences in white matter tract mincrostructure are associated with cognitive performnance from childhood to adulthood. Biological Psychiatry, 75(3), 248–256.PubMedCentralCrossRefPubMedGoogle Scholar
  46. Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neuroscience & Biobehavioral Reviews, 30(6), 730–748.CrossRefGoogle Scholar
  47. Raz, N., Gunning-Dixon, F. M., Head, D., Dupuis, J. H., & Acker, J. D. (1998). Neuroanatomical correlates of cognitive aging: Evidence from structural magnetic resonance imaging. Neuropsychology, 12(1), 95–114.CrossRefPubMedGoogle Scholar
  48. Salat, D. H., Tuch, D. S., Grevea, D. N., Van der Kouwe, A. J., Hevelone, N. D., Zaleta, A. K., et al. (2005). Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiology of Aging, 26, 1215–1227.CrossRefPubMedGoogle Scholar
  49. Salminen, L. E., Schofield, P. R., Lane, E. M., Heaps, J. M., Pierce, K. D., Cabeen, R., et al. (2013). Neuronal fiber bundle lengths in healthy adult carriers of the ApoE4 allele: A quantitative tractography DTI study. Brain Imaging and Behavior, 7(3), 274–281.CrossRefPubMedGoogle Scholar
  50. Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403–428.CrossRefPubMedGoogle Scholar
  51. Schretlen, D., Pearlson, G. D., Anthony, J. C., Aylward, E. H., Augustine, A. M., Davis, A., et al. (2000). Elucidating the contributions of processing speed, executive ability, and frontal lobe volume to normal age-related differences in fluid intelligence. Journal of the International Neuropsychological Society, 6(1), 52–61.CrossRefPubMedGoogle Scholar
  52. Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6(3), 309–315.CrossRefPubMedGoogle Scholar
  53. Sullivan, E. V., & Pfefferbaum, A. (2006). Diffusion tensor imaging and aging. Neuroscience & Biobehavioral Reviews, 30(6), 749–761.CrossRefGoogle Scholar
  54. Sun, X., Liang, Y., Wang, J., Chen, K., Chen, Y., Zhou, X., et al. (2014). Early frontal structural and functional changes in mild white matter lesions relevant to cognitive decline. Journal of Alzheimers Disease, 40(1), 123–134.Google Scholar
  55. Tang, Y., Nyengaard, J. R., Pakkenberg, B., & Gundersen, H. J. (1997). Age-induced white matter changes in the human brain: A stereological investigation. Neurobiology of Aging, 18(6), 609–615.CrossRefPubMedGoogle Scholar
  56. Tate, D. F., Conley, J., Paul, R. H., Coop, K., Zhang, S., Zhou, W., et al. (2010). Quantitative diffusion tensor imaging tractography metrics are associated with cognitive performance among HIV-infected patients. Brain Imaging and Behavior, 4(1), 60–79.CrossRefGoogle Scholar
  57. Tekin, S., & Cummings, J. L. (2002). Frontal-subcortical neuronal circuits and clinical neuropsychiatry: An update. Journal of Psychosomatic Research, 53, 647–654.CrossRefPubMedGoogle Scholar
  58. Voineskos, A. N., Rajji, T. K., Lobaugh, N. J., Miranda, D., Senton, M. E., Kennedy, J. L., et al. (2012). Age-related decline in white matter tract integrity and cognitive performance: A DTI tractography and structural equation modeling study. Neurobiology of Aging, 33(1), 21–34.PubMedCentralCrossRefPubMedGoogle Scholar
  59. Wang, R., Benner, T., Sorensen, A. G., & Wedeen, V. J. (2007, May). Diffusion toolkit: A software package for diffusion imaging data processing and tractography (Abstract #3720). Poster presented at the Joint Annual Meeting of the International Society for Magnetic Resonance Medicine. http://trackvis.org/Google Scholar
  60. West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120(2), 272–292.CrossRefPubMedGoogle Scholar
  61. Yajeya, J., Quintana, J., & Fuster, J. M. (1988). Prefrontal representation of stimulus attributes during delay tasks: II. The role of behavioral significance. Brain Research, 474(2), 222–230.CrossRefPubMedGoogle Scholar
  62. Zakzanis, K. K., Mraz, R., & Graham, S. J. (2005). An fMRI study of the trail making test. Neuropsychologia, 43(13), 1878–1886.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ashley M. Behrman-Lay
    • 1
    Email author
  • Christina Usher
    • 1
  • Thomas E. Conturo
    • 2
  • Stephen Correia
    • 3
  • David H. Laidlaw
    • 4
  • Elizabeth M. Lane
    • 5
  • Jacob Bolzenius
    • 1
  • Jodi M. Heaps
    • 1
  • Lauren E. Salminen
    • 1
  • Laurie M. Baker
    • 1
  • Ryan Cabeen
    • 4
  • Erbil Akbudak
    • 2
  • Xi Luo
    • 6
  • Peisi Yan
    • 7
  • Robert H. Paul
    • 1
  1. 1.Department of PsychologyUniversity of Missouri – Saint LouisSaint LouisUSA
  2. 2.Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisUSA
  3. 3.Department of Psychiatry & Human BehaviorAlpert Medical School, Brown UniversityProvidenceUSA
  4. 4.Computer Science DepartmentBrown UniversityProvidenceUSA
  5. 5.Vanderbilt University Medical CenterNashvilleUSA
  6. 6.Department of Biostatistics and Center for Statistical SciencesBrown UniversityProvidenceUSA
  7. 7.Center for Computation and VisualizationBrown UniversityProvidenceUSA

Personalised recommendations