Brain Imaging and Behavior

, Volume 9, Issue 4, pp 737–743 | Cite as

Inflammation as a mediator of the relationship between cortical thickness and metabolic syndrome

  • Sonya S. Kaur
  • Mitzi M. Gonzales
  • Danielle E. Eagan
  • Katyoon Goudarzi
  • Hirofumi Tanaka
  • Andreana P. Haley
Original Research

Abstract

Metabolic Syndrome (MetS), the clustering of obesity, high blood pressure, and disordered glucose and lipid/lipoprotein metabolism within a single individual, is associated with poorer cognitive function. It has been hypothesized that cognitive impairment in MetS occurs primarily within the context of inflammation. MetS risk factors are also associated with thinning of the cerebral cortex. However, the mechanisms by which MetS and inflammation affect the brain are poorly understood. The present study used statistical mediation to examine the relationship between MetS risk factors, cortical thickness in a priori regions of interest (ROIs) and inflammation. ROIs were chosen from the previous literature. Forty-three adults between the ages of 40 and 60 years underwent a health screen, neuropsychological testing and structural magnetic resonance imaging. Serum levels of pro-inflammatory markers (interleukin 1, interleukin 2, interleukin 6 and C-Reactive Protein) were measured using enzyme-linked immunosorbent assays. A higher number of MetS risk factors were associated with thinning in the inferior frontal ROI (β = −0.35, p = 0.019) as well as higher levels of serum interleukin 2 (β = 0.31, p = 0.04). A higher level of serum interleukin 2 was also associated with reduced thickness in the inferior frontal gyrus (β = −0.41, p = 0.013). After accounting for the effects of interleukin 2, the number of MetS risk factors was no longer associated with cortical thickness in the inferior frontal gyrus indicating successful statistical mediation. The results indicate a potentially important role for inflammation in linking MetS to cortical thinning and cognitive vulnerability.

Keywords

Inflammation Cortical thickness Metabolic syndrome 

References

  1. Alberti, K. G. M. M., Eckel, R. H., Grundy, S. M., Zimmet, P. Z., Cleeman, J. I., Donato, K. A., et al. (2009). Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; american heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation, 120, 1640–1645.CrossRefPubMedGoogle Scholar
  2. Black, S. A., & Rush, R. D. (2002). Cognitive and functional decline in adults 75 years and older. J Am Geriatr Soc, 50, 1978–1986.CrossRefPubMedGoogle Scholar
  3. Capuron, L., Ravaud, A., & Dantzer, R. (2001). Timing and specificity of cognitive changes induced by Interleukin 2 and Interferon-α treatments in cancer patients. Psychosom Med, 63, 376–386.CrossRefPubMedGoogle Scholar
  4. Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic neuroimages. Comput Biomed Res, 29, 162–173.CrossRefPubMedGoogle Scholar
  5. De Leon, M. J., George, A. E., Golomb, J., Tarshish, C., Convit, A., Kluger, A., et al. (1997). Neurobiol Aging, 18, 1–11.CrossRefPubMedGoogle Scholar
  6. Dickerson, B. C., Bakkour, A., Salat, D. H., Feczko, E., Pacheco, J., Greve, D. N., et al. (2009). The Cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex, 19, 497–510.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Eagan, DE, Gonzales, MM, Tarumi, T, Tanaka, H, Stautberg, S, Haley, AP (2012) Elevated C-Reactive Protein relates to increased cerebral myo-inositol levels in middle-aged adults, Cardiovascular Psychiatry and Neurology Google Scholar
  8. Ellison, M. D., Povlishock, J. T., & Merchant, R. E. (1987). Blood brain barrier dysfunction in cats following recombinant interleukin-2 infusion. Cancer Res, 47, 5765–5770.PubMedGoogle Scholar
  9. Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci, 97, 11044–11099.CrossRefGoogle Scholar
  10. Fletcher, P. C., et al. (1998). The functional roles of prefrontal cortex in episodic memory II. Retr Brain, 121, 1249–1256.CrossRefGoogle Scholar
  11. Forman, D. E., Cohen, R. A., Hoth, K. F., Haley, A. P., Poppas, A., Moser, D. J., et al. (2008). Vascular health and cognitive function in older adults with cardiovascular disease. Artery Res, 2, 35–43.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Gonzales, M., Tarumi, T., Tanaka, H., Sugawara, J., Swann-Sternberg, T., Katyoon, G., et al. (2010). Functional imaging of working memory and peripheral endothelial function in middle-aged adults. Brain Cogn, 73, 146–151.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Henson, R. N., et al. (1999). Right prefrontal cortex and episodic memory retrieval: a functional MRI test of the monitoring hypothesis. Brain, 122, 1367–1381.CrossRefPubMedGoogle Scholar
  14. Hewett, S. I., Csernansky, C. A., & Choi, D. W. (1994). Selective potentiation of NMDA-induced neuronal injury following induction of astrocytic iNOS. Neuron, 13, 487–494.CrossRefPubMedGoogle Scholar
  15. Hofman, A., Ott, A., & Breteler, M. M. (1997). Artherosclerosis, apoliprotein e and prevalence of dementia and Alzheimer’s disease in the rotterdam study. Lancet, 349, 151–154.CrossRefPubMedGoogle Scholar
  16. Holmes, C., & Butchart, J. (2009). Systemic inflammation and Alzheimer’s disease. Biochem Soc Trans, 39, 898–901.CrossRefGoogle Scholar
  17. Karakas, M., & Koenig, W. (2009). CRP in cardiovascular disease. Herz, 34, 607–613.CrossRefPubMedGoogle Scholar
  18. Kim, J. H., Lee, J. W., Kim, G. H., Roh, J. H., Kim, M. J., Seo, S. W., et al. (2012). Cortical asymmetries in normal, mild cognitive impairment, and Alzheimer’s Disease. Neurobiol Aging, 33, 1959–1966.CrossRefPubMedGoogle Scholar
  19. Knopman, D., Boland, L. L., Mosly, T., Howard, G., Liao, D., Szklo, M., et al. (2001). Cardiovascular risk factors and cognitive decline in middle aged adults. Neurology, 56, 42–48.CrossRefPubMedGoogle Scholar
  20. Kwon, H. M., Kim, B. J., Lee, S. H., Choi, S. H., & Yoon, B. W. (2006). Metabolic syndrome as an independent risk factor of silent brain infarction in healthy people. Stroke, 37, 466–470.CrossRefPubMedGoogle Scholar
  21. Lavi, S., Egbarya, R., Lavi, R., & Jacob, G. (2003). Role of nitric oxide in the regulation of cerebral blood flow in humans: chemoregulation versus mechanoregulation. Circulation, 107, 1901–1905.CrossRefPubMedGoogle Scholar
  22. Leritz, E. C., Salat, D. H., Williams, V. J., Schnyer, D. M., Rudolph, J. L., Lipsitz, L., et al. (2011). Thickness of the human cerebral cortex is associated with metrics of cerebrovascular health in a normative sample of community dwelling older adults. Neuroimage, 54, 2659–2671.PubMedCentralCrossRefPubMedGoogle Scholar
  23. McGeer EG, McGeer PL (1999) Brain inflammation in Alzheimer disease and the therapeutic implications. Curr Pharm Des, 5821–5836Google Scholar
  24. Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav Res Methods Instrum Comput, 36, 717–731.CrossRefPubMedGoogle Scholar
  25. Qiu, Z., Sweeney, D. D., Netzeband, J. G., & Gruol, D. L. (1998). Chronic Interleukin 6 alters NMDA receptor mediated responses and enhances neurotoxicity in developing CNS neurons. J Neurosci, 18, 10445–10456.PubMedGoogle Scholar
  26. Raffaitin, C., Gin, H., Empana, J.-P., Helmer, C., Berr, C., Tzourio, C., et al. (2009). Metabolic syndrome and risk for incident Alzheimer’s disease or vascular dementia: the three-city study. Diabetes Care, 32, 169–174.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Rost, N. S., Wolf, P. A., Kase, C. S., Kelly-Hayes, M., Silbershatz, H., Massaro, J. M., et al. (2001). Plasma concentrations of C-reactive protein and risk of ischemic stroke and transient ischemic attack. Stroke, 32, 2575–2579.CrossRefPubMedGoogle Scholar
  28. Segura, B., Jurado, M. A., Freixenet, N., Falcon, C., Junque, C., & Arboix, A. (2009). Microstructural white matter changes in metabolic syndrome: a diffusion tensor imaging study. Neurology, 73, 438–444.CrossRefPubMedGoogle Scholar
  29. Sidak, Z. (1967). Rectangular confidence region for the means of multivariate normal distributions. J Am Stat Assoc, 62, 626–633.Google Scholar
  30. Sweat, V., Starr, V., Bruehl, H., Arentoft, A., Tirsi, A., Javier, E., et al. (2008). C-Reactive protein is linked to lower cognitive performance in overweight and obese women. Inflammation, 31, 198–207.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Venugopal, S. K., Devaraj, S., Yuhanna, I., Shaul, P., & Jialal, I. (2002). Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation, 106, 1439–1441.CrossRefPubMedGoogle Scholar
  32. Waguespack, P. J., Banks, W. A., & Kastin, A. J. (1994). Interleukin-2 does not cross the blood–brain barrier by a saturable transport system. Brain Res Bull, 34, 103–109.CrossRefPubMedGoogle Scholar
  33. White, R. P., Deane, C., Vallance, P., & Markus, H. S. (1998). Nitric oxide synthase inhibition in humans reduces cerebral blood flow but not the hyperemic response to hypercapnia. Stroke, 29, 467–472.CrossRefPubMedGoogle Scholar
  34. White, R. P., Vallance, P., & Markus, H. S. (2000). Effect of inhibition of nitric oxide synthase on dynamic cerebral autoregulation in humans. Clin Sci, 99, 555–560.CrossRefPubMedGoogle Scholar
  35. Wu, A., Ying, Z., & Gomez-Pinilla, F. (2004). The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci, 19, 1699–1707.CrossRefPubMedGoogle Scholar
  36. Yaffe, K. (2007). metabolic syndrome and cognitive disorders: is the sum greater than its parts? Alzheimers Dis Assoc Disord, 21, 167–171.CrossRefGoogle Scholar
  37. Yaffe, K., Lindquist, K., Penninx, B. W., Simonsick, E. M., Pahor, M., Kritchevsky, S., et al. (2003). Inflammatory markers and cognition in well-functioning African-American and white elders. Neurology, 61, 76–80.CrossRefPubMedGoogle Scholar
  38. Yaffe, K., Kanaya, A., Lindquist, K., Simonsick, E. M., Harris, T., Shorr, R. I., et al. (2004). The metabolic syndrome, inflammation, and risk of cognitive decline. J Am Med Assoc, 292, 2237–2242.CrossRefGoogle Scholar
  39. Yaffe, K., Weston, A. L., Blackwell, T., & Krueger, K. A. (2009). The metabolic syndrome and the development of cognitive impairment among older women. Clin Neurol, 72, A99.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sonya S. Kaur
    • 1
    • 3
  • Mitzi M. Gonzales
    • 1
    • 3
  • Danielle E. Eagan
    • 1
    • 3
  • Katyoon Goudarzi
    • 1
  • Hirofumi Tanaka
    • 2
    • 3
  • Andreana P. Haley
    • 1
    • 3
  1. 1.Department of PsychologyThe University of Texas at AustinAustinUSA
  2. 2.Department of Kinesiology and Health EducationThe University of Texas at AustinAustinUSA
  3. 3.Imaging Research CenterThe University of Texas at AustinAustinUSA

Personalised recommendations