Advertisement

Brain Imaging and Behavior

, Volume 9, Issue 3, pp 639–649 | Cite as

Cardiorespiratory fitness is associated with brain structure, cognition, and mood in a middle-aged cohort at risk for Alzheimer’s disease

  • Elizabeth A. Boots
  • Stephanie A. Schultz
  • Jennifer M. Oh
  • Jordan Larson
  • Dorothy Edwards
  • Dane Cook
  • Rebecca L. Koscik
  • Maritza N. Dowling
  • Catherine L. Gallagher
  • Cynthia M. Carlsson
  • Howard A. Rowley
  • Barbara B. Bendlin
  • Asenath LaRue
  • Sanjay Asthana
  • Bruce P. Hermann
  • Mark A. Sager
  • Sterling C. Johnson
  • Ozioma C. OkonkwoEmail author
Original Research

Abstract

Cardiorespiratory fitness (CRF) is an objective measure of habitual physical activity (PA), and has been linked to increased brain structure and cognition. The gold standard method for measuring CRF is graded exercise testing (GXT), but GXT is not feasible in many settings. The objective of this study was to examine whether a non-exercise estimate of CRF is related to gray matter (GM) volumes, white matter hyperintensities (WMH), cognition, objective and subjective memory function, and mood in a middle-aged cohort at risk for Alzheimer’s disease (AD). Three hundred and fifteen cognitively healthy adults (mean age =58.58 years) enrolled in the Wisconsin Registry for Alzheimer’s Prevention underwent structural MRI scanning, cognitive testing, anthropometric assessment, venipuncture for laboratory tests, and completed a self-reported PA questionnaire. A subset (n = 85) underwent maximal GXT. CRF was estimated using a previously validated equation incorporating sex, age, body-mass index, resting heart rate, and self-reported PA. Results indicated that the CRF estimate was significantly associated with GXT-derived peak oxygen consumption, validating its use as a non-exercise CRF measure in our sample. Support for this finding was seen in significant associations between the CRF estimate and several cardiovascular risk factors. Higher CRF was associated with greater GM volumes in several AD-relevant brain regions including the hippocampus, amygdala, precuneus, supramarginal gyrus, and rostral middle frontal gyrus. Increased CRF was also associated with lower WMH and better cognitive performance in Verbal Learning & Memory, Speed & Flexibility, and Visuospatial Ability. Lastly, CRF was negatively correlated with self- and informant-reported memory complaints, and depressive symptoms. Together, these findings suggest that habitual participation in physical activity may provide protection for brain structure and cognitive function, thereby decreasing future risk for AD.

Keywords

Cardiorespiratory fitness Preclinical Alzheimer’s disease MRI White matter hyperintensities Cognition Mood 

Notes

Acknowledgements

This work was supported by National Institute on Aging grants K23 AG045957 (OCO), R01 AG027161 (MAS), R01 AG021155 (SCJ), P50 AG033514 (SA), and P50 AG033514-S1 (OCO); by a Veterans Administration Merit Review Grant I01CX000165 (SCJ); and by a Clinical and Translational Science Award (UL1RR025011) to the University of Wisconsin, Madison. Portions of this research were supported by the Wisconsin Alumni Research Foundation, the Helen Bader Foundation, Northwestern Mutual Foundation, Extendicare Foundation, and from the Veterans Administration including facilities and resources at the Geriatric Research Education and Clinical Center of the William S. Middleton Memorial Veterans Hospital, Madison, WI.

Special thanks to James H. Stein, MD, Claudia Korcarz, DVM RDCS, Jean Einerson, MS, Jessica Horn, BS CEP, and the rest of the Artherosclerosis Imaging Research Program for facilitating graded exercise tests; Caitlin A. Cleary, BS, Sandra Harding, MS, Jennifer Bond, BA, Janet Rowley, BA, and the WRAP psychometrists for helping with study data collection; researchers and staff at the Waisman Center, University of Wisconsin–Madison, where the brain scans took place; and participants in the Wisconsin Registry for Alzheimer’s Prevention for their continued dedication.

Disclosures

Elizabeth A. Boots, Stephanie A. Schultz, Jennifer M. Oh, Jordan Larson, Dorothy Edwards, Dane Cook, Rebecca L. Koscik, Maritza N. Dowling, Catherine L. Gallagher, Cynthia M. Carlsson, Howard A. Rowley, Barbara B. Bendlin, Asenath LaRue, Sanjay Asthana, Bruce P. Hermann, Mark A. Sager, Sterling C. Johnson, and Ozioma C. Okonkwo declare no conflicts of interest.

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

References

  1. Amariglio, R. E., Becker, J. A., Carmasin, J., Wadsworth, L. P., Lorius, N., Sullivan, C., & Rentz, D. M. (2012). Subjective cognitive complaints and amyloid burden in cognitively normal older individuals. Neuropsychologia, 50(12), 2880–2886. doi: 10.1016/j.neuropsychologia.2012.08.011.PubMedCentralCrossRefPubMedGoogle Scholar
  2. American College of Sports Medicine. (2014). ACSM’s guidelines for exercise testing and prescription (9th ed.). Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health.Google Scholar
  3. Astrand, P. O., & Ryhming, I. (1954). A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. Journal of Applied Physiology, 7(2), 218–221.PubMedGoogle Scholar
  4. Baker, L. D., Frank, L. L., Foster-Schubert, K., Green, P. S., Wilkinson, C. W., McTiernan, A., & Craft, S. (2010). Aerobic exercise improves cognition for older adults with glucose intolerance, a risk factor for Alzheimer’s disease. Journal of Alzheimer’s Disease, 22(2), 569–579. doi: 10.3233/JAD-2010-100768.PubMedCentralPubMedGoogle Scholar
  5. Balke, B., & Ware, R. W. (1959). An experimental study of physical fitness of Air Force personnel. United States Armed Forces Medical Journal, 10(6), 675–688.PubMedGoogle Scholar
  6. Benton, A. L. (1994). Neuropsychological assessment. Annual Review of Psychology, 45, 1–23. doi: 10.1146/annurev.ps.45.020194.000245.CrossRefPubMedGoogle Scholar
  7. Birdsill, A. C., Koscik, R. L., Jonaitis, E. M., Johnson, S. C., Okonkwo, O. C., Hermann, B. P., & Bendlin, B. B. (2014). Regional white matter hyperintensities: aging, Alzheimer’s disease risk, and cognitive function. Neurobiology of Aging, 35(4), 769–776. doi: 10.1016/j.neurobiolaging.2013.10.072.CrossRefPubMedGoogle Scholar
  8. Brown, A. D., McMorris, C. A., Longman, R. S., Leigh, R., Hill, M. D., Friedenreich, C. M., & Poulin, M. J. (2010). Effects of cardiorespiratory fitness and cerebral blood flow on cognitive outcomes in older women. Neurobiology of Aging, 31(12), 2047–2057. doi: 10.1016/j.neurobiolaging.2008.11.002.CrossRefPubMedGoogle Scholar
  9. Burns, J. M., Cronk, B. B., Anderson, H. S., Donnelly, J. E., Thomas, G. P., Harsha, A., & Swerdlow, R. H. (2008). Cardiorespiratory fitness and brain atrophy in early Alzheimer disease. Neurology, 71(3), 210–216. doi: 10.1212/01.wnl.0000317094.86209.cb.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Colcombe, S. J., Erickson, K. I., Raz, N., Webb, A. G., Cohen, N. J., McAuley, E., & Kramer, A. F. (2003). Aerobic fitness reduces brain tissue loss in aging humans. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 58(2), 176–180.CrossRefGoogle Scholar
  11. Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J., & Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 3316–3321. doi: 10.1073/pnas.0400266101.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Conn, V. S. (2010). Depressive symptom outcomes of physical activity interventions: meta-analysis findings. Annals of Behavioral Medicine, 39(2), 128–138. doi: 10.1007/s12160-010-9172-x.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9, 179–194. doi: 10.1006/nimg.1998.0395.CrossRefPubMedGoogle Scholar
  14. Debette, S., & Markus, H. S. (2010). The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ, 341, c3666. doi: 10.1136/bmj.c3666.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Defina, L. F., Willis, B. L., Radford, N. B., Gao, A., Leonard, D., Haskell, W. L., & Berry, J. D. (2013). The association between midlife cardiorespiratory fitness levels and later-life dementia: a cohort study. Annals of Internal Medicine, 158(3), 162–168. doi: 10.7326/0003-4819-158-3-201302050-00005.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Dowling, N. M., Hermann, B., La Rue, A., & Sager, M. A. (2010). Latent structure and factorial invariance of a neuropsychological test battery for the study of preclinical Alzheimer’s disease. Neuropsychology, 24(6), 742–756. doi: 10.1037/a0020176.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9, 195–207. doi: 10.1006/nimg.1998.0396.CrossRefPubMedGoogle Scholar
  18. Gordon, B. A., Rykhlevskaia, E. I., Brumback, C. R., Lee, Y., Elavsky, S., Konopack, J. F., & Fabiani, M. (2008). Neuroanatomical correlates of aging, cardiopulmonary fitness level, and education. Psychophysiology, 45(5), 825–838. doi: 10.1111/j.1469-8986.2008.00676.x.PubMedGoogle Scholar
  19. Honea, R. A., Thomas, G. P., Harsha, A., Anderson, H. S., Donnelly, J. E., Brooks, W. M., & Burns, J. M. (2009). Cardiorespiratory fitness and preserved medial temporal lobe volume in Alzheimer disease. Alzheimer Disease and Associated Disorders, 23(3), 188–197. doi: 10.1097/WAD.0b013e31819cb8a2.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Jackson, A. S., Blair, S. N., Mahar, M. T., Wier, L. T., Ross, R. M., & Stuteville, J. E. (1990). Prediction of functional aerobic capacity without exercise testing. Medicine and Science in Sports and Exercise, 22(6), 863–870.CrossRefPubMedGoogle Scholar
  21. Jackson, A. S., Sui, X., O’Connor, D. P., Church, T. S., Lee, D. C., Artero, E. G., & Blair, S. N. (2012). Longitudinal cardiorespiratory fitness algorithms for clinical settings. American Journal of Preventive Medicine, 43(5), 512–519. doi: 10.1016/j.amepre.2012.06.032.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Jessen, F., Feyen, L., Freymann, K., Tepest, R., Maier, W., Heun, R., & Scheef, L. (2006). Volume reduction of the entorhinal cortex in subjective memory impairment. Neurobiology of Aging, 27(12), 1751–1756. doi: 10.1016/j.neurobiolaging.2005.10.010.CrossRefPubMedGoogle Scholar
  23. Johnson, N. F., Kim, C., Clasey, J. L., Bailey, A., & Gold, B. T. (2012). Cardiorespiratory fitness is positively correlated with cerebral white matter integrity in healthy seniors. NeuroImage, 59(2), 1514–1523. doi: 10.1016/j.neuroimage.2011.08.032.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Jorm, A. F., & Jacomb, P. A. (1989). The informant questionnaire on cognitive decline in the elderly (IQCODE): socio-demographic correlates, reliability, validity and some norms. Psychological Medicine, 19(4), 1015–1022.CrossRefPubMedGoogle Scholar
  25. Julious, S. A., & Mullee, M. A. (1994). Confounding and Simpson’s paradox. BMJ, 309(6967), 1480–1481.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Jurca, R., Jackson, A. S., LaMonte, M. J., Morrow, J. R., Jr., Blair, S. N., Wareham, N. J., & Laukkanen, R. (2005). Assessing cardiorespiratory fitness without performing exercise testing. American Journal of Preventive Medicine, 29(3), 185–193. doi: 10.1016/j.amepre.2005.06.004.CrossRefPubMedGoogle Scholar
  27. Kaplan, E., Goodglass, H., & Weintraub, S. (1983). Boston naming test. Philadelphia: Lea & Febiger.Google Scholar
  28. Kline, G. M., Porcari, J. P., Hintermeister, R., Freedson, P. S., Ward, A., McCarron, R. F., & Rippe, J. M. (1987). Estimation of VO2max from a one-mile track walk, gender, age, and body weight. Medicine and Science in Sports and Exercise, 19(3), 253–259.CrossRefPubMedGoogle Scholar
  29. Koscik, R. L., La Rue, A., Jonaitis, E. M., Okonkwo, O. C., Johnson, S. C., Bendlin, B. B., & Sager, M. A. (2014). Emergence of mild cognitive impairment in late middle-aged adults in the Wisconsin registry for Alzheimer’s prevention. Dementia and Geriatric Cognitive Disorders, 38(1–2), 16–30. doi: 10.1159/000355682.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Lakoski, S. G., Barlow, C. E., Farrell, S. W., Berry, J. D., Morrow, J. R., Jr., & Haskell, W. L. (2011). Impact of body mass index, physical activity, and other clinical factors on cardiorespiratory fitness (from the cooper center longitudinal study). American Journal of Cardiology, 108(1), 34–39. doi: 10.1016/j.amjcard.2011.02.338.CrossRefPubMedGoogle Scholar
  31. Liu, R., Sui, X., Laditka, J. N., Church, T. S., Colabianchi, N., Hussey, J., & Blair, S. N. (2012). Cardiorespiratory fitness as a predictor of dementia mortality in men and women. Medicine and Science in Sports and Exercise, 44(2), 253–259. doi: 10.1249/MSS.0b013e31822cf717.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Mailey, E. L., White, S. M., Wojcicki, T. R., Szabo, A. N., Kramer, A. F., & McAuley, E. (2010). Construct validation of a non-exercise measure of cardiorespiratory fitness in older adults. BMC Public Health, 10, 59. doi: 10.1186/1471-2458-10-59.PubMedCentralCrossRefPubMedGoogle Scholar
  33. McAuley, E., Szabo, A. N., Mailey, E. L., Erickson, K. I., Voss, M., White, S. M., & Kramer, A. F. (2011). Non-exercise estimated cardiorespiratory fitness: associations with brain structure, cognition, and memory complaints in older adults. Mental Health Physical Activity, 4(1), 5–11. doi: 10.1016/j.mhpa.2011.01.001.PubMedCentralCrossRefPubMedGoogle Scholar
  34. McTiernan, A., Kooperberg, C., White, E., Wilcox, S., Coates, R., Adams-Campbell, L. L., & Women’s Health Initiative Cohort, S. (2003). Recreational physical activity and the risk of breast cancer in postmenopausal women: the Women’s Health Initiative Cohort Study. JAMA, 290(10), 1331–1336. doi: 10.1001/jama.290.10.1331.CrossRefPubMedGoogle Scholar
  35. Nelson, M. E., Rejeski, W. J., Blair, S. N., Duncan, P. W., Judge, J. O., King, A. C., & Castaneda-Sceppa, C. (2007). Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Medicine and Science in Sports and Exercise, 39(8), 1435–1445. doi: 10.1249/mss.0b013e3180616aa2.CrossRefPubMedGoogle Scholar
  36. Nes, B. M., Janszky, I., Vatten, L. J., Nilsen, T. I., Aspenes, S. T., & Wisloff, U. (2011). Estimating V.O 2peak from a nonexercise prediction model: the HUNT Study, Norway. Medicine and Science in Sports and Exercise, 43(11), 2024–2030. doi: 10.1249/MSS.0b013e31821d3f6f.CrossRefPubMedGoogle Scholar
  37. Newson, R. S., & Kemps, E. B. (2006). Cardiorespiratory fitness as a predictor of successful cognitive ageing. Journal of Clinical and Experimental Neuropsychology, 28(6), 949–967. doi: 10.1080/13803390591004356.CrossRefPubMedGoogle Scholar
  38. Prakash, R. S., Voss, M. W., Erickson, K. I., Lewis, J. M., Chaddock, L., Malkowski, E., & Kramer, A. F. (2011). Cardiorespiratory fitness and attentional control in the aging brain. Frontiers in Human Neuroscience, 4, 229. doi: 10.3389/fnhum.2010.00229.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Radloff, L. S. (1977). The CES-D scale: a self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385–401.CrossRefGoogle Scholar
  40. Reitan, R., & Wolfson, D. (1993). The halstead-reitan neuropsychological test battery: Theory and clinical interpretation. Tucson: Neuropsychology Press.Google Scholar
  41. Sager, M. A., Hermann, B., & La Rue, A. (2005). Middle-aged children of persons with Alzheimer’s disease: APOE genotypes and cognitive function in the Wisconsin registry for Alzheimer’s prevention. Journal of Geriatric Psychiatry and Neurology, 18(4), 245–249. doi: 10.1177/0891988705281882.CrossRefPubMedGoogle Scholar
  42. Schmidt, M. (1996). Rey auditory verbal learning test: A handbook. Torrance, CA: Western Psychological Services.Google Scholar
  43. Schmidt, P., Gaser, C., Arsic, M., Buck, D., Forschler, A., Berthele, A., & Muhlau, M. (2012). An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. NeuroImage, 59(4), 3774–3783. doi: 10.1016/j.neuroimage.2011.11.032.CrossRefPubMedGoogle Scholar
  44. Simpson, E. H. (1951). The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society: Series B Methodological, 13, 238–241.Google Scholar
  45. Trenerry, M., Crosson, B., DeBoe, J., & Leber, L. (1989). Stroop neuropsychological screening test. Odessa: Psychological Assessment Resources, Inc.Google Scholar
  46. Tseng, B. Y., Gundapuneedi, T., Khan, M. A., Diaz-Arrastia, R., Levine, B. D., Lu, H., & Zhang, R. (2013). White matter integrity in physically fit older adults. NeuroImage, 82, 510–516. doi: 10.1016/j.neuroimage.2013.06.011.CrossRefPubMedGoogle Scholar
  47. Tu, Y. K., Gunnell, D., & Gilthorpe, M. S. (2008). Simpson’s paradox, Lord’s paradox, and suppression effects are the same phenomenon–the reversal paradox. Emerging Themes Epidemiology, 5, 2. doi: 10.1186/1742-7622-5-2.CrossRefGoogle Scholar
  48. U.S. Department of Health & Human Services (1998). Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults: The Evidence Report. Available at http://www.nhlbi.nih.gov/guidelines/obesity/ob_gdlns.htm: Accessed May 22, 2014.
  49. U.S. Department of Health & Human Services (2008). 2008 Physical Activity Guidelines for Americans. Available at http://www.health.gov/paguidelines/guidelines/default.aspx: Accessed February 21, 2014.
  50. Vidoni, E. D., Honea, R. A., Billinger, S. A., Swerdlow, R. H., & Burns, J. M. (2012). Cardiorespiratory fitness is associated with atrophy in Alzheimer’s and aging over 2 years. Neurobiology of Aging, 33(8), 1624–1632. doi: 10.1016/j.neurobiolaging.2011.03.016.PubMedCentralCrossRefPubMedGoogle Scholar
  51. Wechsler, D. (1997). WAIS-III: Wechsler adult intelligence scale - (3rd ed.). San Antonio: The Psychological Corporation.Google Scholar
  52. Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio: The Psychological Corporation.Google Scholar
  53. Wilkinson, G. (1993). Wide range achievement test administration manual (3rd ed.). Wilmington: Wide Range Incorporated.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Elizabeth A. Boots
    • 1
    • 2
  • Stephanie A. Schultz
    • 1
    • 2
  • Jennifer M. Oh
    • 1
    • 2
  • Jordan Larson
    • 1
    • 2
  • Dorothy Edwards
    • 2
    • 3
    • 4
  • Dane Cook
    • 3
  • Rebecca L. Koscik
    • 4
  • Maritza N. Dowling
    • 2
    • 5
  • Catherine L. Gallagher
    • 1
    • 2
    • 6
  • Cynthia M. Carlsson
    • 1
    • 2
  • Howard A. Rowley
    • 2
    • 7
  • Barbara B. Bendlin
    • 1
    • 2
    • 4
  • Asenath LaRue
    • 4
  • Sanjay Asthana
    • 1
    • 2
    • 4
  • Bruce P. Hermann
    • 2
    • 4
    • 6
  • Mark A. Sager
    • 2
    • 4
  • Sterling C. Johnson
    • 1
    • 2
    • 4
  • Ozioma C. Okonkwo
    • 1
    • 2
    • 4
    Email author
  1. 1.Geriatric Research Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadison53705 USA
  2. 2.Department of Medicine and Alzheimer’s Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  3. 3.Department of KinesiologyUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Wisconsin Alzheimer’s InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  5. 5.Department of Biostatistics & Medical InformaticsUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  6. 6.Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  7. 7.Department of RadiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA

Personalised recommendations