Advertisement

Brain Imaging and Behavior

, Volume 9, Issue 4, pp 663–677 | Cite as

Atomic connectomics signatures for characterization and differentiation of mild cognitive impairment

  • Jinli Ou
  • Li Xie
  • Xiang Li
  • Dajiang Zhu
  • Douglas P. Terry
  • A. Nicholas Puente
  • Rongxin Jiang
  • Yaowu Chen
  • Lihong Wang
  • Dinggang Shen
  • Jing Zhang
  • L. Stephen Miller
  • Tianming LiuEmail author
Original Research

Abstract

In recent years, functional connectomics signatures have been shown to be a very valuable tool in characterizing and differentiating brain disorders from normal controls. However, if the functional connectivity alterations in a brain disease are localized within sub-networks of a connectome, then accurate identification of such disease-specific sub-networks is critical and this capability entails both fine-granularity definition of connectome nodes and effective clustering of connectome nodes into disease-specific and non-disease-specific sub-networks. In this work, we adopted the recently developed DICCCOL (dense individualized and common connectivity-based cortical landmarks) system as a fine-granularity high-resolution connectome construction method to deal with the first issue, and employed an effective variant of non-negative matrix factorization (NMF) method to pinpoint disease-specific sub-networks, which we called atomic connectomics signatures in this work. We have implemented and applied this novel framework to two mild cognitive impairment (MCI) datasets from two different research centers, and our experimental results demonstrated that the derived atomic connectomics signatures can effectively characterize and differentiate MCI patients from their normal controls. In general, our work contributed a novel computational framework for deriving descriptive and distinctive atomic connectomics signatures in brain disorders.

Keywords

Resting state fMRI Brain networks Functional connectome MCI NMF DICCCOL 

Notes

Acknowledgments

T Liu was supported by NIH R01 DA-033393, NIH R01 AG-042599, NSF CAREER Award IIS-1149260, NSF CBET-1302089 and NSF BCS-1439051. J Zhang was supported by start-up funding and Sesseel Award from Yale University. The authors would like to thank the anonymous reviewers for their constructive comments.

Conflict of Interest

Jinli Ou, Li Xie, Xiang Li, Dajiang Zhu, Douglas P. Terry, A. Nicholas Puente, Rongxin Jiang, Yaowu Chen, Lihong Wang, Dinggang Shen, Jing Zhang, L. Stephen Miller, and Tianming Liu declare that they have no conflicts of interest.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

References

  1. Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. Signal Processing, IEEE Transactions on, 54(11), 4311–4322.CrossRefGoogle Scholar
  2. Arbabshirani, M. R., Kiehl, K. A., Pearlson, G. D., & Calhoun, V. D. (2013). Classification of schizophrenia patients based on resting-state functional network connectivity. Frontiers in Neuroscience, 7. doi: 10.3389/fnins.2013.00133.
  3. Bassett, D. S., & Bullmore, E. (2006). Small-world brain networks. The Neuroscientist, 12(6), 512–523.CrossRefPubMedGoogle Scholar
  4. Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J., & Sonuga-Barke, E. J. S. (2009). Default-mode brain dysfunction in mental disorders: a systematic review. Neuroscience & Biobehavioral Reviews, 33(3), 279–296.CrossRefGoogle Scholar
  5. Brunet, J.-P., Tamayo, P., Golub, T. R., & Mesirov, J. P. (2004). Metagenes and molecular pattern discovery using matrix factorization. Proceedings of the National Academy of Sciences, 101(12), 4164–4169.CrossRefGoogle Scholar
  6. Camchong, J., MacDonald, A. W., 3rd, Bell, C., Mueller, B. A., & Lim, K. O. (2011). Altered functional and anatomical connectivity in schizophrenia. Schizophrenia Bulletin, 37(3), 640–650.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Cocchi, L., Bramati, I. E., Zalesky, A., Furukawa, E., Fontenelle, L. F., Moll, J., et al. (2012). Altered functional brain connectivity in a non-clinical sample of young adults with attention-deficit/hyperactivity disorder. The Journal of Neuroscience, 32(49), 17753–17761.CrossRefPubMedGoogle Scholar
  8. Cox, D., & Pinto, N. (2011). Beyond simple features: A large-scale feature search approach to unconstrained face recognition. Automatic Face & Gesture Recognition and Workshops (FG 2011), 2011 I.E. International Conference on, (pp. 8–15).Google Scholar
  9. Derrfuss, J., & Mar, R. A. (2009). Lost in localization: the need for a universal coordinate database. NeuroImage, 48(1), 1–7.CrossRefPubMedGoogle Scholar
  10. Faraco, C. C., Puente, A. N., Brown, C., Terry, D. P., & Stephen Miller, L. (2013). Lateral temporal hyper-activation as a novel biomarker of mild cognitive impairment. Neuropsychologia, 51(11), 2281–2293.CrossRefPubMedGoogle Scholar
  11. Fornito, A., & Bullmore, E. T. (2014). Connectomics: a new paradigm for understanding brain disease. European Neuropsychopharmacology. doi: 10.1016/j.euroneuro.2014.02.011.
  12. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8(9), 700–711.CrossRefPubMedGoogle Scholar
  13. Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Human Brain Mapping, 26(1), 15–29.CrossRefPubMedGoogle Scholar
  14. Gilboa, A., Shalev, A. Y., Laor, L., Lester, H., Louzoun, Y., Chisin, R., et al. (2004). Functional connectivity of the prefrontal cortex and the amygdala in posttraumatic stress disorder. Biological Psychiatry, 55(3), 263–272.CrossRefPubMedGoogle Scholar
  15. Greicius, M. D., Srivastava, G., Reiss, A. L., & Menon, V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 4637–4642.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Hughes, C. P., Berg, L., Danziger, W. L., Coben, L. A., & Martin, R. L. (1982). A new clinical scale for the staging of dementia. The British Journal of Psychiatry, 140(6), 566–572.CrossRefPubMedGoogle Scholar
  17. Hutchins, L. N., Murphy, S. M., Singh, P., & Graber, J. H. (2008). Position-dependent motif characterization using non-negative matrix factorization. Bioinformatics, 24(23), 2684–2690.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Kennedy, D. (2010). Making connections in the connectome era. Neuroinformatics, 8(2), 61–62.CrossRefPubMedGoogle Scholar
  19. Kuncheva, L. I., & Vetrov, D. P. (2006). Evaluation of stability of k-Means cluster ensembles with respect to random initialization. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(11), 1798–1808.CrossRefGoogle Scholar
  20. Lancichinetti, A., & Fortunato, S. (2012). Consensus clustering in complex networks. Scientific Reports, 2. doi: 10.1038/srep00336.
  21. Lanius, R. A., Williamson, P. C., Bluhm, R. L., Densmore, M., Boksman, K., Neufeld, R. W. J., et al. (2005). Functional connectivity of dissociative responses in posttraumatic stress disorder: a functional magnetic resonance imaging investigation. Biological Psychiatry, 57(8), 873–884.CrossRefPubMedGoogle Scholar
  22. Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788–791.CrossRefPubMedGoogle Scholar
  23. Li, K., Guo, L., Zhu, D., Hu, X., Han, J., & Liu, T. (2012). Individual functional ROI optimization via maximization of group-wise consistency of structural and functional profiles. Neuroinformatics, 10(3), 225–242.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Li, K., Zhu, D., Guo, L., Li, Z., Lynch, M. E., Coles, C., et al. (2013). Connectomics signatures of prenatal cocaine exposure affected adolescent brains. Human Brain Mapping, 34(10), 2494–2510.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Li, X., Zhu, D., Jiang, X., Jin, C., Zhang, X., Guo, L., et al. (2014). Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients. Human Brain Mapping, 35(4), 1761–1778.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Liu, T. (2011). A few thoughts on brain ROIs. Brain Imaging and Behavior, 5(3), 189–202.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Liu, T., Shen, D., & Davatzikos, C. (2004). Deformable registration of cortical structures via hybrid volumetric and surface warping. NeuroImage, 22(4), 1790–1801.CrossRefPubMedGoogle Scholar
  28. Mirkin, B. (1998). Mathematical classification and clustering: From how to what and why. Classification, data analysis, and data highways (pp. 172–181). Berlin: Springer.CrossRefGoogle Scholar
  29. Ou, J., Lian, Z., Xie, L., Li, X., Wang, P., Hao, Y., et al. (2014). Atomic dynamic functional interaction patterns for characterization of ADHD. Human Brain Mapping, 35(10), 5262–5278.Google Scholar
  30. Passingham, R. E., Stephan, K. E., & Kotter, R. (2002). The anatomical basis of functional localization in the cortex. Nature Reviews. Neuroscience, 3(8), 606–616.CrossRefPubMedGoogle Scholar
  31. Pati, Y. C., Rezaiifar, R., & Krishnaprasad, P. S. (1993). Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. Signals, Systems, and Computers, Proceedings of the 27 th Annual Asilomar Conference on, (pp. 40–44).Google Scholar
  32. Poldrack, R. A. (2012). The future of fMRI in cognitive neuroscience. NeuroImage, 62(2), 1216–1220.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Puente, A. N., Faraco, C., Terry, D. P., Brown, C., & Miller, L. S. (2014). Minimal functional brain differences between older adults with and without mild cognitive impairment during the stroop. Aging, Neuropsychology, and Cognition, 21(3), 346–369.CrossRefGoogle Scholar
  34. Qiang, Z., & Baoxin, L. (2010). Discriminative K-SVD for dictionary learning in face recognition. Computer Vision and Pattern Recognition (CVPR), 2010 I.E. Conference on, (pp. 2691–2698).Google Scholar
  35. Rubinstein, R., Zibulevsky, M., & Elad, M. (2008). Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. CS Technion. doi: 10.1.1.182.9978.
  36. Santhanam, P., Coles, C. D., Li, Z., Li, L., Lynch, M. E., & Hu, X. (2011). Default mode network dysfunction in adults with prenatal alcohol exposure. Psychiatry Research: Neuroimaging, 194(3), 354–362.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Saxe, A., Koh, P. W., Chen, Z., Bhand, M., Suresh, B., & Ng, A. Y. (2011). On random weights and unsupervised feature learning. Proceedings of the 28th International Conference on Machine Learning (ICML-11), (pp. 1089–1096).Google Scholar
  38. Sporns, O. (2011). The human connectome: a complex network. Annals of the New York Academy of Sciences, 1224(1), 109–125.CrossRefPubMedGoogle Scholar
  39. Sporns, O. (2013). Network attributes for segregation and integration in the human brain. Current Opinion in Neurobiology, 23(2), 162–171.CrossRefPubMedGoogle Scholar
  40. Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8(9), 418–425.CrossRefPubMedGoogle Scholar
  41. Stam, C. J. (2010). Characterization of anatomical and functional connectivity in the brain: a complex networks perspective. International Journal of Psychophysiology, 77(3), 186–194.CrossRefPubMedGoogle Scholar
  42. Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M. D. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Computational Biology, 4(6), e1000100.PubMedCentralCrossRefPubMedGoogle Scholar
  43. Trefethen, L. N., & Bau III, D. (1997). Numerical linear algebra (Vol. 50): Siam.Google Scholar
  44. Venkataraman, A., Whitford, T. J., Westin, C. F., Golland, P., & Kubicki, M. (2012). Whole brain resting state functional connectivity abnormalities in schizophrenia. Schizophrenia Research, 139(1–3), 7–12.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., et al. (2007). Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Human Brain Mapping, 28(10), 967–978.CrossRefPubMedGoogle Scholar
  46. Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Browndyke, J. N., Potter, G. G., et al. (2012). Identification of MCI individuals using structural and functional connectivity networks. NeuroImage, 59(3), 2045–2056.PubMedCentralCrossRefPubMedGoogle Scholar
  47. Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Yi, M. (2009). Robust face recognition via sparse representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(2), 210–227.CrossRefGoogle Scholar
  48. Yang, Z., & Oja, E. (2010). Linear and nonlinear projective nonnegative matrix factorization. Neural Networks, IEEE Transactions on, 21(5), 734–749.CrossRefGoogle Scholar
  49. Yang, Z., Yuan, Z., & Laaksonen, J. (2007). Projective non-negative matrix factorization with applications to facial image processing. International Journal of Pattern Recognition and Artificial Intelligence, 21(08), 1353–1362.CrossRefGoogle Scholar
  50. Yuan, Y., Jiang, X., Zhu, D., Chen, H., Li, K., Lv, P., et al. (2013). Meta-analysis of functional roles of DICCCOLs. Neuroinformatics, 11(1), 47–63.PubMedCentralCrossRefPubMedGoogle Scholar
  51. Zhang, Y., Han, J., Hu, X., Guo, L., & Liu, T. (2013). Data-driven evaluation of functional connectivity metrics. Biomedical Imaging (ISBI), 2013 I.E. 10th International Symposium on, (pp. 532–535).Google Scholar
  52. Zhu, D., Li, K., Faraco, C. C., Deng, F., Zhang, D., Guo, L., et al. (2012). Optimization of functional brain ROIs via maximization of consistency of structural connectivity profiles. NeuroImage, 59(2), 1382–1393.PubMedCentralCrossRefPubMedGoogle Scholar
  53. Zhu, D., Li, K., Guo, L., Jiang, X., Zhang, T., Zhang, D., et al. (2013). DICCCOL: dense individualized and common connectivity-based cortical landmarks. Cerebral Cortex, 23(4), 786–800.PubMedCentralCrossRefPubMedGoogle Scholar
  54. Zhu, D., Li, K., Terry, D. P., Puente, A. N., Wang, L., Shen, D., et al. (2014). Connectome-scale assessments of structural and functional connectivity in MCI. Human Brain Mapping, 35(7), 2911–2923.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jinli Ou
    • 1
  • Li Xie
    • 1
  • Xiang Li
    • 2
  • Dajiang Zhu
    • 2
    • 4
  • Douglas P. Terry
    • 3
  • A. Nicholas Puente
    • 3
  • Rongxin Jiang
    • 1
  • Yaowu Chen
    • 1
  • Lihong Wang
    • 7
  • Dinggang Shen
    • 6
  • Jing Zhang
    • 5
  • L. Stephen Miller
    • 3
    • 4
  • Tianming Liu
    • 2
    Email author
  1. 1.School of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhouChina
  2. 2.Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research CenterThe University of GeorgiaAthensUSA
  3. 3.Department of PsychologyThe University of GeorgiaAthensUSA
  4. 4.Bioimaging Research CenterThe University of GeorgiaAthensUSA
  5. 5.Department of StatisticsYale UniversityNew HavenUSA
  6. 6.Department of RadiologyUNCChapel HillUSA
  7. 7.Department of Biomedical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations