Brain Imaging and Behavior

, Volume 9, Issue 3, pp 619–638 | Cite as

Task-rest modulation of basal ganglia connectivity in mild to moderate Parkinson’s disease

  • Eva M. Müller-Oehring
  • Edith V. Sullivan
  • Adolf Pfefferbaum
  • Neng C. Huang
  • Kathleen L. Poston
  • Helen M. Bronte-Stewart
  • Tilman Schulte
Original Research


Parkinson’s disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG–cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen–medial parietal and pallidum–occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate–supramarginal gyrus and pallidum–inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal–cortical connectivity, specifically between caudate–prefrontal, caudate–precuneus, and putamen–motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance.


Parkinson’s disease Cognitive control Response switching fMRI Task-related and resting-state functional connectivity Neural compensation 



Support: AA018022, AA012388, AA017168, AA010723, AA017923, NIH/NINDS K23 NS075097, NIH/NINDS P50 NS071675, Michael J. Fox Foundation for Parkinson’s disease

Conflict of Interest

Authors Eva M. Müller-Oehring, Edith V. Sullivan, Adolf Pfefferbaum, Neng C. Huang, Kathleen L. Poston, Helen M. Bronte-Stewart, and Tilman Schulte declare that they have no conflict of interest.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Supplementary material

11682_2014_9317_MOESM1_ESM.docx (66 kb)
Supplementary Table 1 (DOCX 65 kb)
11682_2014_9317_MOESM2_ESM.docx (67 kb)
Supplementary Table 2 (DOCX 67 kb)
11682_2014_9317_MOESM3_ESM.docx (63 kb)
Supplementary Table 3 (DOCX 63 kb)
11682_2014_9317_MOESM4_ESM.docx (64 kb)
Supplementary Table 4 (DOCX 64 kb)
11682_2014_9317_MOESM5_ESM.docx (57 kb)
Supplementary Table 5 (DOCX 56 kb)


  1. Aarsland, D., Hutchinson, M., & Larsen, J. P. (2003). Cognitive, psychiatric and motor response to galantamine in Parkinson’s disease with dementia. International Journal of Geriatric Psychiatry, 18, 937–941.CrossRefPubMedGoogle Scholar
  2. Aarsland, D., Bronnick, K., Williams-Gray, C., Weintraub, D., Marder, K., Kulisevsky, J., Burn, D., Barone, P., Pagonabarraga, J., Allcock, L., Santangelo, G., Foltynie, T., Janvin, C., Larsen, J. P., Barker, R. A., & Emre, M. (2010). Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology, 75, 1062–1069.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neuroscience, 12, 366–75. Review.CrossRefGoogle Scholar
  4. Alexander, G. E., Crutcher, M. D., & DeLong, M. R. (1990). Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Progress in Brain Research, 85, 119–146. Review.CrossRefPubMedGoogle Scholar
  5. Amaral, D. G., & Cowan, W. M. (1980). Subcortical afferents to the hippocampal formation in the monkey. The Journal of Comparative Neurology, 189, 573–591.CrossRefPubMedGoogle Scholar
  6. Arimura, N., Nakayama, Y., Yamagata, T., Tanji, J., & Hoshi, E. (2013). Involvement of the globus pallidus in behavioral goal determination and action specification. Journal of Neuroscience, 33, 13639–13653.CrossRefPubMedGoogle Scholar
  7. Baglio, F., Blasi, V., Falini, A., Farina, E., Mantovani, F., Olivotto, F., Scotti, G., Nemni, R., & Bozzali, M. (2011). Functional brain changes in early Parkinson’s disease during motor response and motor inhibition. Neurobiology of Aging, 32, 115–24.CrossRefPubMedGoogle Scholar
  8. Baudrexel, S., Witte, T., Seifried, C., von Wegner, F., Beissner, F., Klein, J. C., Steinmetz, H., Deichmann, R., Roeper, J., & Hilker, R. (2011). Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson’s disease. Neuroimage, 55, 1728–38.CrossRefPubMedGoogle Scholar
  9. Baudrexel, S., Seifried, C., Penndorf, B., Klein, J. C., Middendorp, M., Steinmetz, H., Grünwald, F., & Hilker, R. (2014). The value of putaminal diffusion imaging versus 18-fluorodeoxyglucose positron emission tomography for the differential diagnosis of the Parkinson variant of multiple system atrophy. Movement Disorders, 29, 380–387.CrossRefPubMedGoogle Scholar
  10. Beck, A., Steer, R., & Brown, G. (1996). Manual for the beck depression inventory-II. San Antonio: Psychological Corporation.Google Scholar
  11. Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., & Golani, I. (2001). Controlling the false discovery rate in behavior genetics research. Behavioural Brain Research, 125, 279–284.CrossRefPubMedGoogle Scholar
  12. Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., & Vaadia, E. (1998). Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends in Neurosciences, 21, 32–38.CrossRefPubMedGoogle Scholar
  13. Betchen, S. A., & Kaplitt, M. (2003). Future and current surgical therapies in Parkinson’s disease. Current Opinion in Neurology, 16, 487–493.PubMedGoogle Scholar
  14. Bhatia, K. P., & Marsden, C. D. (1994). The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain, 117, 859–876.CrossRefPubMedGoogle Scholar
  15. Boehler, C. N., Appelbaum, L. G., Krebs, R. M., Chen, L. C., & Woldorff, M. G. (2011). The role of stimulus salience and attentional capture across the neural hierarchy in a stop-signal task. PLoS One, 6, e26386.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Buhmann, C., Binkofski, F., Klein, C., Büchel, C., van Eimeren, T., Erdmann, C., Hedrich, K., Kasten, M., Hagenah, J., Deuschl, G., Pramstaller, P. P., & Siebner, H. R. (2005). Motor reorganization in asymptomatic carriers of a single mutant Parkin allele: a human model for presymptomatic parkinsonism. Brain, 128, 2281–2290.CrossRefPubMedGoogle Scholar
  17. Caballol, N., Martí, M. J., & Tolosa, E. (2007). Cognitive dysfunction and dementia in Parkinson disease. Movement disorders: Official Journal of the Movement Disorder Society, 22, S358–366.CrossRefGoogle Scholar
  18. Cameron, I. G., Watanabe, M., Pari, G., & Munoz, D. P. (2010). Executive impairment in Parkinson’s disease: response automaticity and task switching. Neuropsychologia, 48, 1948–1957.CrossRefPubMedGoogle Scholar
  19. Camicioli, R., Gee, M., Bouchard, T. P., Fisher, N. J., Hanstock, C. C., Emery, D. J., & Martin, W. R. (2009). Voxel-based morphometry reveals extra-nigral atrophy patterns associated with dopamine refractory cognitive and motor impairment in parkinsonism. Parkinsonism & Related Disorders, 15, 187–195.CrossRefGoogle Scholar
  20. Catalan, M. J., Ishii, K., Honda, M., Samii, A., & Hallett, M. (1999). A PET study of sequential finger movements of varying length in patients with Parkinson’s disease. Brain, 122, 483–495.CrossRefPubMedGoogle Scholar
  21. Cooper, J., Sagar, H., Doherty, S., Jordan, N., Tidswell, P., & Sullivan, E. (1992). Different effects of dopaminergic and anticholinergic therapies on cognitive and motor function in Parkinson’s disease. A follow-up study of untreated patients. Brain, 115, 1701–1725.CrossRefPubMedGoogle Scholar
  22. Costa, R. M., Lin, S. C., Sotnikova, T. D., Cyr, M., Gainetdinov, R. R., Caron, M. G., & Nicolelis, M. A. (2006). Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron, 52(2), 359–369.CrossRefPubMedGoogle Scholar
  23. Crovitz, H. F., & Zener, K. (1962). A group-test for assessing hand- and eye-dominance. The American Journal of Psychology, 75, 271–276.CrossRefPubMedGoogle Scholar
  24. Damier, P., Hirsch, E. C., Agid, Y., & Graybiel, A. M. (1999). The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain, 122, 1437–1448.CrossRefPubMedGoogle Scholar
  25. Davis, S., Dennis, N., Daselaar, S., Fleck, M., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18, 1201–1209.PubMedCentralCrossRefPubMedGoogle Scholar
  26. DeLong, M. R., & Wichmann, T. (2007). Circuits and circuit disorders of the basal ganglia. Archives of Neurology, 64, 20–24. Review.CrossRefPubMedGoogle Scholar
  27. Desmond, J. E., & Glover, G. H. (2002). Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. Journal of Neuroscience Methods, 118, 115–128.CrossRefPubMedGoogle Scholar
  28. Dirnberger, G., & Jahanshahi, M. (2013). Executive dysfunction in Parkinson’s disease: a review. Journal of Neuropsychology, 7, 193–224.CrossRefPubMedGoogle Scholar
  29. Dubois, B., & Pillon, B. (1997). Cognitive deficits in Parkinson’s disease. Journal of Neurology, 244, 2–8. Review.CrossRefPubMedGoogle Scholar
  30. Dzirasa, K., Ramsey, A. J., Takahashi, D. Y., Stapleton, J., Potes, J. M., Williams, J. K., Gainetdinov, R. R., Sameshima, K., Caron, M. G., & Nicolelis, M. A. (2009). Hyperdopaminergia and NMDA receptor hypofunction disrupt neural phase signaling. Journal of Neuroscience, 29, 8215–8224.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Esposito, F., Tessitore, A., Giordano, A., De Micco, R., Paccone, A., Conforti, R., Pignataro, G., Annunziato, L., & Tedeschi, G. (2013). Rhythm-specific modulation of the sensorimotor network in drug-naive patients with Parkinson’s disease by levodopa. Brain, 136, 710–725.CrossRefPubMedGoogle Scholar
  32. Fahn, S., & Elton, R. L. (1987). Members of the UPDRS Development Committee. Unified Parkinson’s Disease Rating Scale. In D. Fahn, C. D. Marsden, D. Calne, & M. Goldstein (Eds.), Recent development in parkinson’s disease, Vol. 2 (pp. 153–163). Florham Park: Maacmillan Healthcare Information. 293–304.Google Scholar
  33. Faust, M. E., Balota, D. A., Spieler, D. H., & Ferraro, F. R. (1999). Individual differences in information-processing rate and account: implications for group differences in response latency. Psychological Bulletin, 125, 777–799.CrossRefPubMedGoogle Scholar
  34. Fernández de Bobadilla, R., Pagonabarraga, J., Martínez-Horta, S., Pascual-Sedano, B., Campolongo, A., & Kulisevsky, J. (2013). Parkinson’s disease-cognitive rating scale: psychometrics for mild cognitive impairment. Movement Disorders, 28, 1376–1383.CrossRefPubMedGoogle Scholar
  35. Fling, B. W., Cohen, R. G., Mancini, M., Carpenter, S. D., Fair, D. A., Nutt, J. G., & Horak, F. B. (2014). Functional reorganization of the locomotor network in Parkinson patients with freezing of gait. PLoS One, 9, e100291.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Fuentes, R., Petersson, P., Siesser, W., Caron, M. G., & Nicolelis, M. A. (2009). Spinal cord stimulation restores locomotion in animal models of Parkinson’s disease. Science, 323, 1578–1582.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Gelb, D. J., Oliver, E., & Gilman, S. (1999). Diagnostic criteria for Parkinson disease. Archives of Neurology, 56, 33–39.CrossRefPubMedGoogle Scholar
  38. Giguere, M., & Goldman-Rakic, P. S. (1988). Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. The Journal of Comparative Neurology, 277, 195–213.CrossRefPubMedGoogle Scholar
  39. Grahn, J. A., Parkinson, J. A., & Owen, A. M. (2008). The cognitive functions of the caudate nucleus. Progress in Neurobiology, 86, 141–55.CrossRefPubMedGoogle Scholar
  40. Graybiel, A. M., Aosaki, T., Flaherty, A. W., & Kimura, M. (1994). The basal ganglia and adaptive motor control. Science, 265, 1826–1831.CrossRefPubMedGoogle Scholar
  41. Greenhouse, I., Gould, S., Houser, M., & Aron, A. R. (2013). Stimulation of contacts in ventral but not dorsal subthalamic nucleus normalizes response switching in Parkinson’s disease. Neuropsychologia, 51, 1302–1309.PubMedCentralCrossRefPubMedGoogle Scholar
  42. Haber, S. N., & Calzavara, R. (2009). The cortico-basal ganglia integrative network: the role of the thalamus. Brain Research Bulletin, 78, 69–74.PubMedCentralCrossRefPubMedGoogle Scholar
  43. Hacker, C. D., Perlmutter, J. S., Criswell, S. R., Ances, B. M., & Snyder, A. Z. (2012). Resting state functional connectivity of the striatum in Parkinson’s disease. Brain, 135, 3699–3711.PubMedCentralCrossRefPubMedGoogle Scholar
  44. Harrison, B. J., Shaw, M., Yücel, M., Purcell, R., Brewer, W. J., Strother, S. C., Egan, G. F., Olver, J. S., Nathan, P. J., & Pantelis, C. (2005). Functional connectivity during Stroop task performance. Neuroimage, 24, 181–191.CrossRefPubMedGoogle Scholar
  45. Hartberg, C. B., Sundet, K., Rimol, L. M., Haukvik, U. K., Lange, E. H., Nesvåg, R., Melle, I., Andreassen, O. A., & Agartz, I. (2011). Subcortical brain volumes relate to neurocognition in schizophrenia and bipolar disorder and healthy controls. Prog. Neuropsychopharmacol. Biological Psychiatry, 35, 1122–1130.Google Scholar
  46. Helmich, R. C., Derikx, L. C., Bakker, M., Scheeringa, R., Bloem, B. R., & Toni, I. (2010). Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cerebral Cortex, 20, 1175–1186.CrossRefPubMedGoogle Scholar
  47. Helmich, R. C., Janssen, M. J., Oyen, W. J., Bloem, B. R., & Toni, I. (2011). Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Annals of Neurology, 69, 269–281.CrossRefPubMedGoogle Scholar
  48. Herzog, J., Volkmann, J., Krack, P., Kopper, F., Pötter, M., Lorenz, D., Steinbach, M., Klebe, S., Hamel, W., Schrader, B., Weinert, D., Müller, D., Mehdorn, H. M., & Deuschl, G. (2003). Two-year follow-up of subthalamic deep brain stimulation in Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society, 18, 1332–1337.CrossRefGoogle Scholar
  49. Hoehn, M., & Yahr, M. (1967). Parkinsonism: onset, progression and mortality. Neurology, 17, 427–442.CrossRefPubMedGoogle Scholar
  50. Honey, G. D., Suckling, J., Zelaya, F., Long, C., Routledge, C., Jackson, S., Ng, V., Fletcher, P. C., Williams, S. C., Brown, J., & Bullmore, E. T. (2003). Dopaminergic drug effects on physiological connectivity in a human cortico-striato-thalamic system. Brain, 126, 1767–1781.CrossRefPubMedGoogle Scholar
  51. Jiménez, L., & Méndez, A. (2013). It is not what you expect: dissociating conflict adaptation from expectancies in a Stroop task. Journal of Experimental Psychology. Human Perception and Performance, 39, 271–284.CrossRefPubMedGoogle Scholar
  52. Jurica, P. J., Leitten, C. L., Mattis, S. (2004). DRS-2 Dementia Rating Scale-2. Professional manual: Psychological Assessment Resources.Google Scholar
  53. Kim, S. H., Park, K. H., Sung, Y. H., Lee, Y. B., Park, H. M., & Shin, D. J. (2008). Dementia mimicking a sudden cognitive and behavioral change induced by left globus pallidus infarction: review of two cases. Journal of the Neurological Sciences, 272, 178–182.CrossRefPubMedGoogle Scholar
  54. Kim, C., Johnson, N. F., & Gold, B. T. (2014). Conflict adaptation in prefrontal cortex: now you see it, now you don’t. Cortex, 50, 76–85.CrossRefPubMedGoogle Scholar
  55. Kirsch-Darrow, L., Fernandez, H. H., Marsiske, M., Okun, M. S., & Bowers, D. (2006). Dissociating apathy and depression in Parkinson disease. Neurology, 67, 33–38.PubMedCentralCrossRefPubMedGoogle Scholar
  56. Koerts, J., Van Beilen, M., Tucha, O., Leenders, K. L., & Brouwer, W. H. (2011). Executive functioning in daily life in Parkinson’s disease: initiative, planning and multi-task performance. PLoS One, 6(12), e29254.PubMedCentralCrossRefPubMedGoogle Scholar
  57. Kwak, Y., Peltier, S., Bohnen, N. I., Müller, M. L., Dayalu, P., & Seidler, R. D. (2010). Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson’s disease. Frontiers in Systems Neuroscience, 4, 143.PubMedCentralCrossRefPubMedGoogle Scholar
  58. Lebedev, A. V., Westman, E., Simmons, A., Lebedeva, A., Siepel, F. J., Pereira, J. B., & Aarsland, D. (2014). Large-scale resting state network correlates of cognitive impairment in Parkinson’s disease and related dopaminergic deficits. Frontiers in Systems Neuroscience, 8, 45.PubMedCentralPubMedGoogle Scholar
  59. Leisman, G., & Melillo, R. (2013). The basal ganglia: motor and cognitive relationships in a clinical neurobehavioral context. Reviews in the Neurosciences, 24, 9–25.CrossRefPubMedGoogle Scholar
  60. Li, S., Arbuthnott, G. W., Jutras, M. J., Goldberg, J. A., & Jaeger, D. (2007). Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deepbrain stimulation. Journal of Neurophysiology, 98, 3525–3537.CrossRefPubMedGoogle Scholar
  61. Liu, X., Banich, M. T., Jacobson, B. L., & Tanabe, J. L. (2004). Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI. Neuroimage, 22, 1097–1106.CrossRefPubMedGoogle Scholar
  62. Matelli, M., Luppino, G., Fogassi, L., & Rizzolatti, G. (1989). Thalamic input to inferior area 6 and area 4 in the macaque monkey. The Journal of Comparative Neurology, 280, 468–488.CrossRefPubMedGoogle Scholar
  63. Martinu, K., & Monchi, O. (2013). Cortico-basal ganglia and cortico-cerebellar circuits in Parkinson’s disease: pathophysiology or compensation? Behavoral Neuroscience, 127, 222–236.CrossRefGoogle Scholar
  64. McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11, 103–107.CrossRefPubMedGoogle Scholar
  65. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain and Cognition, 42, 183–200.CrossRefPubMedGoogle Scholar
  66. Milham, M. P., & Banich, M. T. (2005). Anterior cingulate cortex: an fMRI analysis of conflict specificity and functional differentiation. Human Brain Mapping, 25, 328–335.CrossRefPubMedGoogle Scholar
  67. Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage, 44, 893–905.PubMedCentralCrossRefPubMedGoogle Scholar
  68. Nambu, A., Tokuno, H., & Takada, M. (2002). Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neuroscience Research, 43, 111-117.Google Scholar
  69. Norita, M., & Kawamura, K. (1980). Subcortical afferents to the monkey amygdala: an HRP study. Brain Research, 190, 225–230.CrossRefPubMedGoogle Scholar
  70. Obeso, I., Wilkinson, L., Casabona, E., Bringas, M. L., Álvarez, M., Álvarez, L., Pavón, N., Rodríguez-Oroz, M. C., Macías, R., Obeso, J. A., & Jahanshahi, M. (2011). Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson’s disease. Experimental Brain Research, 212, 371–384.Google Scholar
  71. Obeso, I., Wilkinson, L., Rodríguez-Oroz, M. C., Obeso, J. A., & Jahanshahi, M. (2013). Bilateral stimulation of the subthalamic nucleus has differential effects on reactive and proactive inhibition and conflict-induced slowing in Parkinson’s disease. Experimental Brain Research, 226, 451–462.CrossRefPubMedGoogle Scholar
  72. Paolo, A. M., Tröster, A. I., Glatt, S. L., Hubble, J. P., & Koller, W. C. (1995). Differentiation of the dementias of Alzheimer’s and Parkinson’s disease with the dementia rating scale. Journal of Geriatric Psychiatry and Neurology, 8, 184–188.CrossRefPubMedGoogle Scholar
  73. Park, D. C., Polk, T. A., Mikels, J. A., Taylor, S. F., & Marshuetz, C. (2001). Cerebral aging: integration of brain and behavioral models of cognitive function. Dialogues in Clinical Neuroscience, 3, 151–165.PubMedCentralPubMedGoogle Scholar
  74. Pasquereau, B., Nadjar, A., Arkadir, D., Bezard, E., Goillandeau, M., Bioulac, B., Gross, C. E., & Boraud, T. (2007). Shaping of motor responses by incentive values through the basal ganglia. Journal of Neuroscience, 27(5), 1176–1183.CrossRefPubMedGoogle Scholar
  75. Pedraza, O., Lucas, J. A., Smith, G. E., Petersen, R. C., Graff-Radford, N. R., & Ivnik, R. J. (2010). Robust and expanded norms for the Dementia rating scale. Archives of Clinical Neuropsychology, 25, 347–358.PubMedCentralCrossRefPubMedGoogle Scholar
  76. Pirogovsky, E., Schiehser, D. M., Litvan, I., Obtera, K. M., Burke, M. M., Lessig, S. L., Song, D. D., Liu, L., & Filoteo, J. V. (2014). The utility of the Mattis Dementia Rating Scale in Parkinson’s disease mild cognitive impairment. Parkinsonism and Related Disorders, 20, 627–631.CrossRefPubMedGoogle Scholar
  77. Playford, E. D., Jenkins, I. H., Passingham, R. E., Nutt, J., Frackowiak, R. S., & Brooks, D. J. (1992). Impaired mesial frontal and putamen activation in Parkinson’s disease: a positron emission tomography study. Annals of Neurology, 32, 151–161.CrossRefPubMedGoogle Scholar
  78. Poline, J. B., Worsley, K. J., Evans, A. C., & Friston, K. J. (1997). Combining spatial extent and peak intensity to test for activations in functional imaging. Neuroimage, 5, 83–96.CrossRefPubMedGoogle Scholar
  79. Poston, K. L., & Eidelberg, D. (2012). Functional brain networks and abnormal connectivity in the movement disorders. Neuroimage, 62, 2261–2270.PubMedCentralCrossRefPubMedGoogle Scholar
  80. Rodriguez-Oroz, M. C., Jahanshahi, M., Krack, P., Litvan, I., Macias, R., Bezard, E., & Obeso, J. A. (2009). Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurology, 8, 1128–1139.CrossRefPubMedGoogle Scholar
  81. Ryan, N. S., Keihaninejad, S., Shakespeare, T. J., Lehmann, M., Crutch, S. J., Malone, I. B., Thornton, J. S., Mancini, L., Hyare, H., Yousry, T., Ridgway, G. R., Zhang, H., Modat, M., Alexander, D. C., Rossor, M. N., Ourselin, S., & Fox, N. C. (2013). Magnetic resonance imaging evidence for presymptomatic change in thalamus and caudate in familial Alzheimer’s disease. Brain, 136, 1399–1414.PubMedCentralCrossRefPubMedGoogle Scholar
  82. Salo, R., Henik, A., & Robertson, L. C. (2001). Interpreting Stroop interference: an analysis of differences between task versions. Neuropsychology, 15, 462–471.CrossRefPubMedGoogle Scholar
  83. Sanchez-Lopez, J., Fernandez, T., Silva-Pereyra, J., Martinez Mesa, J. A., & Di Russo, F. (2014). Differences in visuo-motor control in skilled vs. novice martial arts athletes during sustained and transient attention tasks: a motor-related cortical potential study. PLoS One, 9, e91112.PubMedCentralCrossRefPubMedGoogle Scholar
  84. Schulte, T., Mueller-Oehring, E. M., Rosenbloom, M. J., Pfefferbaum, A., & Sullivan, E. V. (2005). Differential effect of HIV infection and alcoholism on conflict processing, attentional allocation, and perceptual load: evidence from a Stroop Match-to-Sample task. Biological Psychiatry, 57, 67–75.CrossRefPubMedGoogle Scholar
  85. Schulte, T., Müller-Oehring, E. M., Javitz, H., Pfefferbaum, A., & Sullivan, E. V. (2008). Callosal compromise differentially affects conflict processing and attentional allocation in alcoholism, HIV, and their comorbidity. Brain Imaging and Behavior, 2, 27–38.PubMedCentralCrossRefPubMedGoogle Scholar
  86. Schulte, T., Müller-Oehring, E. M., Vinco, S., Hoeft, F., Pfefferbaum, A., & Sullivan, E. V. (2009). Double dissociation between action-driven and perception-driven conflict resolution invoking anterior versus posterior brain systems. Neuroimage, 48(2), 381–390.PubMedCentralCrossRefPubMedGoogle Scholar
  87. Schulte, T., Müller-Oehring, E. M., Chanraud, S., Rosenbloom, M. J., Pfefferbaum, A., & Sullivan, E. V. (2011). Age-related reorganization of functional networks for successful conflict resolution: a combined functional and structural MRI study. Neurobiology of Aging, 32, 2075–2090.PubMedCentralCrossRefPubMedGoogle Scholar
  88. Song, D. D., & Haber, S. N. (2000). Striatal responses to partial dopaminergic lesion: evidence for compensatory sprouting. Journal of Neuroscience, 20, 5102–5114.PubMedGoogle Scholar
  89. Stafford, T., & Gurney, K. N. (2007). Biologically constrained action selection improves cognitive control in a model of the Stroop task. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences, 362, 1671–1684.CrossRefPubMedGoogle Scholar
  90. Stanic, D., Parish, C. L., Zhu, W. M., Krstew, E. V., Lawrence, A. J., Drago, J., Finkelstein, D. I., & Horne, M. K. (2003). Changes in function and ultrastructure of striatal dopaminergic terminals that regenerate following partial lesions of the SNpc. Journal of Neurochemistry, 86, 329–343.CrossRefPubMedGoogle Scholar
  91. Stebbins, G. T., & Goetz, C. G. (1998). Factor structure of the Unified Parkinson’s disease rating scale: motor examination section. Movement Disorders, 13, 633–636.CrossRefPubMedGoogle Scholar
  92. Steinhauser, M., & Hübner, R. (2009). Distinguishing response conflict and task conflict in the Stroop task: evidence from ex-Gaussian distribution analysis. Journal of Experimental Psychology. Human Perception and Performance, 35, 1398–1412.CrossRefPubMedGoogle Scholar
  93. Strafella, A. P., Ko, J. H., Grant, J., Fraraccio, M., & Monchi, O. (2005). Corticostriatal functional interactions in Parkinson’s disease: a rTMS/[11C]raclopride PET study. European Journal of Neuroscience, 22, 2946–2952.PubMedCentralCrossRefPubMedGoogle Scholar
  94. Tessitore, A., Esposito, F., Vitale, C., Santangelo, G., Amboni, M., Russo, A., Corbo, D., Cirillo, G., Barone, P., & Tedeschi, G. (2012). Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology, 79, 2226–2232.CrossRefPubMedGoogle Scholar
  95. Utevsky, A. V., Smith, D. V., & Huettel, S. A. (2014). Precuneus is a functional core of the default-mode network. Journal of Neuroscience, 34, 932–940.PubMedCentralCrossRefPubMedGoogle Scholar
  96. van Nuenen, B. F., Helmich, R. C., Buenen, N., van de Warrenburg, B. P., Bloem, B. R., & Toni, I. (2012). Compensatory activity in the extrastriate body area of Parkinson’s disease patients. Journal of Neuroscience, 32, 9546–9553.CrossRefPubMedGoogle Scholar
  97. Vandenbossche, J., Deroost, N., Soetens, E., Spildooren, J., Vercruysse, S., Nieuwboer, A., & Kerckhofs, E. (2011). Freezing of gait in Parkinson disease is associated with impaired conflict resolution. Neurorehabilitation and Neural Repair, 25, 765–773.CrossRefPubMedGoogle Scholar
  98. Vassar, S. D., Bordelon, Y. M., Hays, R. D., Diaz, N., Rausch, R., Mao, C., & Vickrey, B. G. (2012). Confirmatory factor analysis of the motor unified Parkinson’s disease rating scale. Parkinson’s Disease, 2012, 719167. doi: 10.1155/2012/719167.
  99. Wang, T., Chen, Z., Zhao, G., Hitchman, G., Liu, C., Zhao, X., Liu, Y., & Chen, A. (2014). Linking inter-individual differences in the conflict adaptation effect to spontaneous brain activity. Neuroimage, 90, 146–152.CrossRefPubMedGoogle Scholar
  100. Wu, T., & Hallett, M. (2005). A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain, 128, 2250–2259.CrossRefPubMedGoogle Scholar
  101. Wu, T., Wang, L., Chen, Y., Zhao, C., Li, K., & Chan, P. (2009). Changes of functional connectivity of the motor network in the resting state in Parkinson’s disease. Neuroscience Letter, 460, 6–10.CrossRefGoogle Scholar
  102. Wu, T., Wang, J., Wang, C., Hallett, M., Zang, Y., Wu, X., & Chan, P. (2012). Basal ganglia circuits changes in Parkinson’s disease patients. Neuroscience Letter, 524, 55–59.CrossRefGoogle Scholar
  103. Wu, T., Liu, J., Zhang, H., Hallett, M., Zheng, Z., Chan, P. (2014). Attention to automatic movements in Parkinson's Disease: Modified automatic mode in the Striatum. Cerebral Cortex, Epub ahead of print.Google Scholar
  104. Yu, H., Sternad, D., Corcos, D. M., & Vaillancourt, D. E. (2007). Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage, 35, 222–233.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Eva M. Müller-Oehring
    • 1
    • 4
  • Edith V. Sullivan
    • 1
  • Adolf Pfefferbaum
    • 1
    • 4
  • Neng C. Huang
    • 3
  • Kathleen L. Poston
    • 2
  • Helen M. Bronte-Stewart
    • 2
  • Tilman Schulte
    • 4
  1. 1.Department of Psychiatry & Behavioral SciencesStanford University School of MedicineStanfordUSA
  2. 2.Department of Neurology & Neurological SciencesStanford University School of MedicineStanfordUSA
  3. 3.Valley Parkinson ClinicLos GatosUSA
  4. 4.Neuroscience Program, SRI InternationalMenlo ParkUSA

Personalised recommendations