Brain Imaging and Behavior

, Volume 9, Issue 3, pp 564–573 | Cite as

Functional neuroimaging of acute oculomotor deficits in concussed athletes

  • Brian Johnson
  • Kai Zhang
  • Mark Hallett
  • Semyon Slobounov
Original Research

Abstract

In the pursuit to better understand the neural underpinnings of oculomotor deficits following concussion we performed a battery of oculomotor tests while performing simultaneous functional magnetic resonance imaging (fMRI). Based on the increasing evidence that concussion can disrupt multiple brain functional networks, including the oculomotor control networks, a series of classic saccadic and smooth pursuit tasks were implemented. Nine concussed athletes were tested within seven days of injury along with nine age and sex matched healthy normal volunteers. Both behavioral and fMRI data revealed differential results between the concussed and normal volunteer groups. Concussed subjects displayed longer latency time in the saccadic tasks, worse position errors, and fewer numbers of self-paced saccades compared to normal volunteer subjects. Furthermore, the concussed group showed recruitment of additional brain regions and larger activation sites as evidenced by fMRI. As a potential diagnostic and management tool for concussion, oculomotor testing shows promise, and here we try to understand the reasons for this disrupted performance with the aide of advanced neuroimaging tools.

Keywords

Concussion Oculomotor Mild traumatic brain injury Eye-Tracking 

References

  1. Bartels, A., Logothetis, N. K., & Moutoussis, K. (2008). fMRI and its interpretations: an illustration on directional selectivity in area V5/MT. Trends in Neurosciences, 31(9), 444–453. doi:10.1016/j.tins.2008.06.004.CrossRefPubMedGoogle Scholar
  2. Bergman, K., & Bay, E. (2010). Mild traumatic brain injury/concussion: A review for ED Nurses. Journal of Emergency Nursing, 36(3), 221–230. doi:10.1016/j.jen.2009.07.001.CrossRefPubMedGoogle Scholar
  3. Bodis-Wollner, I., Bucher, S. F., Seelos, K. C., Paulus, W., Reiser, M., & Oertel, W. H. (1997). Functional MRI mapping of occipital and frontal cortical activity during voluntary and imagined saccades. Neurology, 49(2), 416–420.CrossRefPubMedGoogle Scholar
  4. Boxer, A. L., Garbutt, S., Seeley, W. W., Jafari, A., Heuer, H. W., Mirsky, J., & Miller, B. L. (2012). Saccade abnormalities in autopsy-confirmed frontotemporal lobar degeneration and Alzheimer disease. Archives of Neurology, 69(4), 509–517. doi:10.1001/archneurol.2011.1021.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Broglio, S. P. (2007). Neurocognitive performance of concussed athletes when symptom free. Journal of Athletic Training, 42(4), 504.PubMedCentralPubMedGoogle Scholar
  6. Brown, M. R., Goltz, H. C., Vilis, T., Ford, K. A., & Everling, S. (2006). Inhibition and generation of saccades: rapid event-related fMRI of prosaccades, antisaccades, and nogo trials. NeuroImage, 33(2), 644–659. doi:10.1016/j.neuroimage.2006.07.002.CrossRefPubMedGoogle Scholar
  7. Bryant, R. A., & Harvey, A. G. (1999). Postconcussive symptoms and posttraumatic stress disorder after mild traumatic brain injury. The Journal of Nervous and Mental Disease, 187(5), 302–305. doi:10.1097/00005053-199905000-00006.CrossRefPubMedGoogle Scholar
  8. Capo-Aponte, J. E., Urosevich, T. G., Temme, L. A., Tarbett, A. K., & Sanghera, N. K. (2012). Visual dysfunctions and symptoms during the subacute stage of blast-induced mild traumatic brain injury. Military Medicine, 177(7), 804–813.CrossRefPubMedGoogle Scholar
  9. Contreras, R., Kolster, R., Voss, H. U., Ghajar, J., Suh, M., & Bahar, S. (2008). Eye-target synchronization in mild traumatic brain-injured patients. Journal of Biological Physics, 34(3–4), 381–392. doi:10.1007/s10867-008-9092-1.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Dieterich, M., Muller-Schunk, S., Stephan, T., Bense, S., Seelos, K., & Yousry, T. A. (2009). Functional magnetic resonance imaging activations of cortical eye fields during saccades, smooth pursuit, and optokinetic nystagmus. The Annals of the New York Academy of Sciences, 1164, 282–292. doi:10.1111/j.1749-6632.2008.03718.x.CrossRefPubMedGoogle Scholar
  11. Drew, A. S., Langan, J., Halterman, C., Osternig, L. R., Chou, L. S., & van Donkelaar, P. (2007). Attentional disengagement dysfunction following mTBI assessed with the gap saccade task. Neuroscience Letters, 417(1), 61–65. doi:10.1016/j.neulet.2007.02.038.CrossRefPubMedGoogle Scholar
  12. Ford, K. A., Goltz, H. C., Brown, M. R., & Everling, S. (2005). Neural processes associated with antisaccade task performance investigated with event-related FMRI. Journal of Neurophysiology, 94(1), 429–440. doi:10.1152/jn.00471.2004.CrossRefPubMedGoogle Scholar
  13. Guskiewicz, K. M., Bruce, S. L., Cantu, R. C., Ferrara, M. S., Kelly, J. P., McCrea, M., & McLeod, T. C. V. (2004). National Athletic Trainers' Association position statement: Management of sport-related concussion. Journal of Athletic Training, 39(3), 280–297.PubMedCentralPubMedGoogle Scholar
  14. Heitger, M. H., Anderson, T. J., & Jones, R. D. (2002). Saccade sequences as markers for cerebral dysfunction following mild closed head injury. Attention, 140, 433–448. doi:10.1016/S0079-6123(02)40067-2.Google Scholar
  15. Heitger, M. H., Anderson, T. J., Jones, R. D., Dalrymple-Alford, J. C., Frampton, C. M., & Ardagh, M. W. (2004). Eye movement and visuomotor arm movement deficits following mild closed head injury. Brain, 127, 575–590. doi:10.1093/Brain/Awh066.CrossRefPubMedGoogle Scholar
  16. Heitger, M. H., Macaskill, M. R., Jones, R. D., & Anderson, T. J. (2005). The impact of mild closed head injury on involuntary saccadic adaptation: evidence for the preservation of implicit motor learning. Brain Injury, 19(2), 109–117.CrossRefPubMedGoogle Scholar
  17. Heitger, M. H., Jones, R. D., Dalrymple-Alford, J. C., Frampton, C. M., Ardagh, M. W., & Anderson, T. J. (2006). Motor deficits and recovery during the first year following mild closed head injury. Brain Injury, 20(8), 807–824. doi:10.1080/02699050600676354.CrossRefPubMedGoogle Scholar
  18. Heitger, M. H., Jones, R. D., Macleod, A. D., Snell, D. L., Frampton, C. M., & Anderson, T. J. (2009). Impaired eye movements in post-concussion syndrome indicate suboptimal brain function beyond the influence of depression, malingering or intellectual ability. Brain, 132(Pt 10), 2850–2870. doi:10.1093/brain/awp181.CrossRefPubMedGoogle Scholar
  19. Hellerstein, L. F., Freed, S., & Maples, W. C. (1995). Vision profile of patients with mild brain injury. Journal of the American Optometric Association, 66(10), 634–639.PubMedGoogle Scholar
  20. Kaufman, L. D., Pratt, J., Levine, B., & Black, S. E. (2010). Antisaccades: a probe into the dorsolateral prefrontal cortex in Alzheimer′s disease. A critical review. Journal of Alzheimer's Disease, 19(3), 781–793. doi:10.3233/JAD-2010-1275.PubMedGoogle Scholar
  21. Kraus, M. F., Little, D. M., Donnell, A. J., Reilly, J. L., Simonian, N., & Sweeney, J. A. (2007). Oculomotor function in chronic traumatic brain injury. Cognitive and Behavioral Neurology, 20(3), 170–178. doi:10.1097/WNN.0b013e318142badb.CrossRefPubMedGoogle Scholar
  22. Langlois, J. A., Rutland-Brown, W., & Wald, M. M. (2006). The epidemiology and impact of traumatic brain injury - A brief overview. The Journal of Head Trauma Rehabilitation, 21(5), 375–378.CrossRefPubMedGoogle Scholar
  23. Lencer, R., & Trillenberg, P. (2008). Neurophysiology and neuroanatomy of smooth pursuit in humans. Brain and Cognition, 68(3), 219–228. doi:10.1016/j.bandc.2008.08.013.CrossRefPubMedGoogle Scholar
  24. Lincoln, A. E., Caswell, S. V., Almquist, J. L., Dunn, R. E., Norris, J. B., & Hinton, R. Y. (2011). Trends in Concussion Incidence in High School Sports A Prospective 11-Year Study. The American Journal of Sports Medicine, 39(5), 958–963. doi:10.1177/0363546510392326.CrossRefPubMedGoogle Scholar
  25. McCrory, P., Meeuwisse, W., Johnston, K., Dvorak, J., Aubry, M., Molloy, M., & Cantu, R. (2009). Consensus Statement on Concussion in Sport: the 3rd International Conference on Concussion in Sport held in Zurich, November 2008. British Journal of Sports Medicine, 43(Suppl 1), i76–i84. doi:10.1136/bjsm.2009.058248.CrossRefPubMedGoogle Scholar
  26. McCrory, P., Meeuwisse, W. H., Aubry, M., Cantu, R. C., Dvorak, J., Echemendia, R. J., & Turner, M. (2013). Consensus Statement on Concussion in Sport: The 4th International Conference on Concussion in Sport, Zurich, November 2012. Journal of Athletic Training, 48(4), 554–575. doi:10.4085/1062-6050-48.4.05.PubMedCentralCrossRefPubMedGoogle Scholar
  27. McDowell, J. E., Dyckman, K. A., Austin, B. P., & Clementz, B. A. (2008). Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain and Cognition, 68(3), 255–270. doi:10.1016/j.bandc.2008.08.016.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Muri, R. M., & Nyffeler, T. (2008). Neurophysiology and neuroanatomy of reflexive and volitional saccades as revealed by lesion studies with neurological patients and transcranial magnetic stimulation (TMS). Brain and Cognition, 68(3), 284–292. doi:10.1016/j.bandc.2008.08.018.CrossRefPubMedGoogle Scholar
  29. Nitschke, M. F., Binkofski, F., Buccino, G., Posse, S., Erdmann, C., Kompf, D., & Heide, W. (2004). Activation of cerebellar hemispheres in spatial memorization of saccadic eye movements: An fMRI study. Human Brain Mapping, 22(2), 155–164. doi:10.1002/Hbm.20025.CrossRefPubMedGoogle Scholar
  30. Ozyurt, J., Rutschmann, R. M., & Greenlee, M. W. (2006). Cortical activation during memory-guided saccades. Neuroreport, 17(10), 1005–1009.CrossRefPubMedGoogle Scholar
  31. Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B., & Agid, Y. (1991). Cortical control of memory-guided saccades in man. Experimental Brain Research, 83(3), 607–617.CrossRefPubMedGoogle Scholar
  32. Pierrot-Deseilligny, C., Israel, I., Berthoz, A., Rivaud, S., & Gaymard, B. (1993). Role of the different frontal lobe areas in the control of the horizontal component of memory-guided saccades in man. Experimental Brain Research, 95(1), 166–171.CrossRefPubMedGoogle Scholar
  33. Raz, E., Jensen, J. H., Ge, Y., Babb, J. S., Miles, L., Reaume, J., & Inglese, M. (2011). Brain Iron Quantification in Mild Traumatic Brain Injury: A Magnetic Field Correlation Study. American Journal of Neuroradiology, 32(10), 1851–1856. doi:10.3174/Ajnr.A2637.CrossRefPubMedGoogle Scholar
  34. Schraa-Tam, C. K., van Broekhoven, P., van der Geest, J. N., Frens, M. A., Smits, M., & van der Lugt, A. (2009). Cortical and cerebellar activation induced by reflexive and voluntary saccades. Experimental Brain Research, 192(2), 175–187. doi:10.1007/s00221-008-1569-4.CrossRefPubMedGoogle Scholar
  35. Sedney, C. L., Orphanos, J., & Bailes, J. E. (2011). When to Consider Retiring an Athlete After Sports-Related Concussion. Clinics in Sports Medicine, 30(1), 189–200. doi:10.1016/j.csm.2010.08.005.CrossRefPubMedGoogle Scholar
  36. Slobounov, S. M., Zhang, K., Pennell, D., Ray, W., Johnson, B., & Sebastianelli, W. (2010). Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study. Experimental Brain Research, 202(2), 341–354. doi:10.1007/s00221-009-2141-6.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015–2028. doi:10.1016/j.neuropsychologia.2009.03.004.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Suh, M., Kolster, R., Sarkar, R., McCandliss, B., & Ghajar, J. (2006). Deficits in predictive smooth pursuit after mild traumatic brain injury. Neuroscience Letters, 401(1–2), 108–113. doi:10.1016/j.neulet.2006.02.074.CrossRefPubMedGoogle Scholar
  39. Sweeney, J. A., Luna, B., Keedy, S. K., McDowell, J. E., & Clementz, B. A. (2007). fMRI studies of eye movement control: investigating the interaction of cognitive and sensorimotor brain systems. NeuroImage, 36(Suppl 2), T54–T60. doi:10.1016/j.neuroimage.2007.03.018.PubMedCentralCrossRefPubMedGoogle Scholar
  40. Theriault, M., De Beaumont, L., Tremblay, S., Lassonde, M., & Jolicoeur, P. (2011). Cumulative effects of concussions in athletes revealed by electrophysiological abnormalities on visual working memory. Journal of Clinical and Experimental Neuropsychology, 33(1), 30–41. doi:10.1080/13803391003772873.CrossRefPubMedGoogle Scholar
  41. Toepper, M., Markowitsch, H. J., Gebhardt, H., Beblo, T., Thomas, C., Gallhofer, B., & Sammer, G. (2010). Hippocampal involvement in working memory encoding of changing locations: an fMRI study. Brain Research, 1354, 91–99. doi:10.1016/j.brainres.2010.07.065.CrossRefPubMedGoogle Scholar
  42. Van der Stappen, A., Wuyts, F. L., & Van de Heyning, P. H. (2000). Computerized electronystagmography: normative data revisited. Acta Oto-Laryngologica, 120(6), 724–730.CrossRefGoogle Scholar
  43. Wade, N. J. (2010). Pioneers of eye-movement research. Perception, 39(8), 1150–1150.Google Scholar
  44. Witt, S. T., Lovejoy, D. W., Pearlson, G. D., & Stevens, M. C. (2010). Decreased prefrontal cortex activity in mild traumatic brain injury during performance of an auditory oddball task. Brain Imaging and Behavior, 4(3–4), 232–247. doi:10.1007/s11682-010-9102-3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Brian Johnson
    • 1
  • Kai Zhang
    • 1
  • Mark Hallett
    • 3
  • Semyon Slobounov
    • 1
    • 2
    • 3
  1. 1.Department of KinesiologyThe Pennsylvania State UniversityPennsylvaniaUSA
  2. 2.Department of NeurosurgeryPenn State Milton S. Hershey Medical CenterHersheyUSA
  3. 3.National Institutes of Health, National Institute of Neurological Disorders and StrokeBethesdaUSA

Personalised recommendations