Brain Imaging and Behavior

, Volume 9, Issue 2, pp 323–332 | Cite as

A resting state functional magnetic resonance imaging study of concussion in collegiate athletes

  • Suzanne M. Czerniak
  • Elif M. Sikoglu
  • Ana A. Liso Navarro
  • Joseph McCafferty
  • Jordan Eisenstock
  • J. Herbert Stevenson
  • Jean A. King
  • Constance M. MooreEmail author
Original Research


Sports-related concussions are currently diagnosed through multi-domain assessment by a medical professional and may utilize neurocognitive testing as an aid. However, these tests have only been able to detect differences in the days to week post-concussion. Here, we investigate a measure of brain function, namely resting state functional connectivity, which may detect residual brain differences in the weeks to months after concussion. Twenty-one student athletes (9 concussed within 6 months of enrollment; 12 non-concussed; between ages 18 and 22 years) were recruited for this study. All participants completed the Wisconsin Card Sorting Task and the Color-Word Interference Test. Neuroimaging data, specifically resting state functional Magnetic Resonance Imaging data, were acquired to examine resting state functional connectivity. Two sample t-tests were used to compare the neurocognitive scores and resting state functional connectivity patterns among concussed and non-concussed participants. Correlations between neurocognitive scores and resting state functional connectivity measures were also determined across all subjects. There were no significant differences in neurocognitive performance between concussed and non-concussed groups. Concussed subjects had significantly increased connections between areas of the brain that underlie executive function. Across all subjects, better neurocognitive performance corresponded to stronger brain connectivity. Even at rest, brains of concussed athletes may have to ‘work harder’ than their healthy peers to achieve similar neurocognitive results. Resting state brain connectivity may be able to detect prolonged brain differences in concussed athletes in a more quantitative manner than neurocognitive test scores.


Concussion fMRI Resting state Functional connectivity Neurocognition 



The authors would like to thank the Department of Radiology and the Advanced MR Imaging Core at the University of Massachusetts Medical School. The project described was supported by an award from the Department of Radiology, University of Massachusetts Medical School (UMMS). MRI studies were conducted at the Advanced MR Imaging Center, UMMS, with support from Shaokuan Zheng, PhD. The authors would also like to thank the athletic trainers at Clark University and the College of the Holy Cross for their recruitment efforts.

Funding source

National Institute of Mental Health to CMM (MH073998), and start-up funds to CMM from the University of Massachusetts Medical School. Swiss National Science Foundation (PBGEP3-134252) to AAL.

Conflict of interest

Suzanne Czerniak, Elif Sikoglu, Ana Liso Navarro, Joseph McCafferty, Jordan Eisenstock, J Herbert Stevenson, Jean King, and Constance Moore declare that they have no conflict of interest.

Informed consent statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 . Informed consent was obtained from all patients for being included in the study.


  1. Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., et al. (2011). A baseline for the multivariate comparison of resting-state networks. Frontiers in Systems Neuroscience, 5. Google Scholar
  2. Belanger, H. G., & Vanderploeg, R. D. (2005). The neuropsychological impact of sports-related concussion: a meta-analysis. Journal of the International Neuropsychological Society, 11(4), 345–357.CrossRefPubMedGoogle Scholar
  3. Berg, E. A. (1948). A simple objective technique for measuring flexibility in thinking. The Journal of General Psychology, 39(1), 15–22.CrossRefPubMedGoogle Scholar
  4. Blakemore, S. (2008). The social brain in adolescence. Nature Reviews. Neuroscience, 9(4), 267–277.CrossRefPubMedGoogle Scholar
  5. Blennow, K., Hardy, J., & Zetterberg, H. (2012). The neuropathology and neurobiology of traumatic brain injury. Neuron, 76(5), 886–899.CrossRefPubMedGoogle Scholar
  6. Broglio, S. P., & Puetz, T. W. (2008). The effect of sport concussion on neurocognitive function, self-report symptoms and postural control. Sports Medicine, 38(1), 53–67.CrossRefPubMedGoogle Scholar
  7. Buchsbaum, B. R., Greer, S., Chang, W., & Berman, K. F. (2005). Meta‐analysis of neuroimaging studies of the Wisconsin card‐sorting task and component processes. Human Brain Mapping, 25(1), 35–45.CrossRefPubMedGoogle Scholar
  8. Buckner, R. L., Andrews‐Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124(1), 1–38.CrossRefPubMedGoogle Scholar
  9. Chai, X. J., Whitfield-Gabrieli, S., Shinn, A. K., Gabrieli, J. D., Castañón, A. N., McCarthy, J. M., et al. (2011). Abnormal medial prefrontal cortex resting-state connectivity in bipolar disorder and schizophrenia. Neuropsychopharmacology, 36(10), 2009–2017.CrossRefPubMedCentralPubMedGoogle Scholar
  10. Conklin, S. M., Gianaros, P. J., Brown, S. M., Yao, J. K., Hariri, A. R., Manuck, S. B., & Muldoon, M. F. (2007). Long-chain omega-3 fatty acid intake is associated positively with corticolimbic gray matter volume in healthy adults. Neuroscience Letters, 421(3), 209–212.CrossRefPubMedGoogle Scholar
  11. Cullen, K. R., Gee, D. G., Klimes-Dougan, B., Gabbay, V., Hulvershorn, L., Mueller, B. A., et al. (2009). A preliminary study of functional connectivity in comorbid adolescent depression. Neuroscience Letters, 460(3), 227–231.CrossRefPubMedCentralPubMedGoogle Scholar
  12. Damoiseaux, J., Rombouts, S., Barkhof, F., Scheltens, P., Stam, C., Smith, S. M., & Beckmann, C. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences, 103(37), 13848–13853.CrossRefGoogle Scholar
  13. Damoiseaux, J. S., Beckmann, C. F., Arigita, E. J., Barkhof, F., Scheltens, P., Stam, C. J., et al. (2008). Reduced resting-state brain activity in the “default network” in normal aging. Cerebral Cortex (New York, N.Y.: 1991), 18(8), 1856–1864.Google Scholar
  14. Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-kaplan executive function system (D-KEFS) Psychological Corporation.Google Scholar
  15. Duhaime, A., Beckwith, J. G., Maerlender, A. C., McAllister, T. W., Crisco, J. J., Duma, S. M., et al. (2012). Spectrum of acute clinical characteristics of diagnosed concussions in college athletes wearing instrumented helmets: clinical article. Journal of Neurosurgery, 117(6), 1092–1099.CrossRefPubMedCentralPubMedGoogle Scholar
  16. Echemendia, R. J., Putukian, M., Mackin, R. S., Julian, L., & Shoss, N. (2001). Neuropsychological test performance prior to and following sports-related mild traumatic brain injury. Clinical Journal of Sport Medicine, 11(1), 23–31.CrossRefPubMedGoogle Scholar
  17. Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapping, 2, 56–78.Google Scholar
  18. Gardner, A., Kay-Lambkin, F., Stanwell, P., Donnelly, J., Williams, W. H., Hiles, A., et al. (2012). A systematic review of diffusion tensor imaging findings in sports-related concussion. Journal of Neurotrauma, 29(16), 2521–2538.CrossRefPubMedGoogle Scholar
  19. Grindel, S. H., Lovell, M. R., & Collins, M. W. (2001). The assessment of sport-related concussion: the evidence behind neuropsychological testing and management. Clinical Journal of Sport Medicine, 11(3), 134–143.CrossRefPubMedGoogle Scholar
  20. Hayama, H. R., & Rugg, M. D. (2009). Right dorsolateral prefrontal cortex is engaged during post-retrieval processing of both episodic and semantic information. Neuropsychologia, 47(12), 2409–2416.CrossRefPubMedCentralPubMedGoogle Scholar
  21. Hebb, D. (1949). The organization of behavior: a neuropsychological theory.Google Scholar
  22. Hunt, T. N., Ferrara, M. S., Miller, L. S., & Macciocchi, S. (2007). The effect of effort on baseline neuropsychological test scores in high school football athletes. Archives of Clinical Neuropsychology, 22(5), 615–621.CrossRefPubMedGoogle Scholar
  23. Johnson, B., Zhang, K., Gay, M., Horovitz, S., Hallett, M., Sebastianelli, W., & Slobounov, S. (2012). Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study. NeuroImage, 59(1), 511–518.CrossRefPubMedCentralPubMedGoogle Scholar
  24. Kelly, A. C., Di Martino, A., Uddin, L. Q., Shehzad, Z., Gee, D. G., Reiss, P. T., et al. (2009). Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cerebral Cortex, 19(3), 640–657.CrossRefPubMedGoogle Scholar
  25. Laird, A. R., McMillan, K. M., Lancaster, J. L., Kochunov, P., Turkeltaub, P. E., Pardo, J. V., & Fox, P. T. (2005). A comparison of label‐based review and ALE meta‐analysis in the stroop task. Human Brain Mapping, 25(1), 6–21.CrossRefPubMedGoogle Scholar
  26. Langlois, J. A., Rutland-Brown, W., & Wald, M. M. (2006). The epidemiology and impact of traumatic brain injury: a brief overview. The Journal of Head Trauma Rehabilitation, 21(5), 375–378.CrossRefPubMedGoogle Scholar
  27. Leung, H., Skudlarski, P., Gatenby, J. C., Peterson, B. S., & Gore, J. C. (2000). An event-related functional MRI study of the stroop color word interference task. Cerebral Cortex, 10(6), 552–560.CrossRefPubMedGoogle Scholar
  28. Lie, C., Specht, K., Marshall, J. C., & Fink, G. R. (2006). Using fMRI to decompose the neural processes underlying the wisconsin card sorting test. NeuroImage, 30(3), 1038–1049.CrossRefPubMedGoogle Scholar
  29. MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835–1838.CrossRefPubMedGoogle Scholar
  30. Mahaffey, B. L. (2012). Concussions in high school sports: are they worth the risk? should school football be banned? Missouri Medicine, 109(6), 445–449.PubMedGoogle Scholar
  31. Margulies, D. S., Kelly, A., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2007). Mapping the functional connectivity of anterior cingulate cortex. NeuroImage, 37(2), 579–588.CrossRefPubMedGoogle Scholar
  32. Marquez de la Plata, Carlos, D., Garces, J., Shokri Kojori, E., Grinnan, J., Krishnan, K., Pidikiti, R., et al. (2011). Deficits in functional connectivity of hippocampal and frontal lobe circuits after traumatic axonal injury. Archives of Neurology, 68(1), 74.CrossRefPubMedCentralPubMedGoogle Scholar
  33. Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32(11), 1825–1835.CrossRefPubMedCentralPubMedGoogle Scholar
  34. McCrory, P., Meeuwisse, W. H., Aubry, M., Cantu, B., Dvořák, J., Echemendia, R. J., et al. (2013). Consensus statement on concussion in sport: the 4th international conference on concussion in sport held in zurich, november 2012. British Journal of Sports Medicine, 47(5), 250–258.CrossRefPubMedGoogle Scholar
  35. Monchi, O., Petrides, M., Petre, V., Worsley, K., & Dagher, A. (2001). Wisconsin card sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. The Journal of Neuroscience, 21(19), 7733–7741.PubMedGoogle Scholar
  36. Qin, S., Hermans, E. J., van Marle, H. J., Luo, J., & Fernández, G. (2009). Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biological Psychiatry, 66(1), 25–32.CrossRefPubMedGoogle Scholar
  37. Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: a brief history of an evolving idea. NeuroImage, 37(4), 1083–1090.CrossRefPubMedGoogle Scholar
  38. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682. doi: 10.1073/pnas.98.2.676.CrossRefPubMedCentralPubMedGoogle Scholar
  39. Schatz, P., & Sandel, N. (2013). Sensitivity and specificity of the online version of ImPACT in high school and collegiate athletes. The American Journal of Sports Medicine, 41(2), 321–326.CrossRefPubMedGoogle Scholar
  40. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356.CrossRefPubMedCentralPubMedGoogle Scholar
  41. Sharp, D. J., Beckmann, C. F., Greenwood, R., Kinnunen, K. M., Bonnelle, V., De Boissezon, X., et al. (2011). Default mode network functional and structural connectivity after traumatic brain injury. Brain, 134(8), 2233–2247.CrossRefPubMedGoogle Scholar
  42. Silton, R. L., Heller, W., Towers, D. N., Engels, A. S., Spielberg, J. M., Edgar, J. C., et al. (2010). The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control. NeuroImage, 50(3), 1292–1302.CrossRefPubMedGoogle Scholar
  43. Slobounov, S., Gay, M., Zhang, K., Johnson, B., Pennell, D., Sebastianelli, W., et al. (2011). Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. NeuroImage, 55(4), 1716–1727.CrossRefPubMedCentralPubMedGoogle Scholar
  44. Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., et al. (2011). REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PloS One, 6(9), e25031. doi: 10.1371/journal.pone.0025031.CrossRefPubMedCentralPubMedGoogle Scholar
  45. Staudinger, M. R., Erk, S., & Walter, H. (2011). Dorsolateral prefrontal cortex modulates striatal reward encoding during reappraisal of reward anticipation. Cerebral Cortex, 21(11), 2578–2588.CrossRefPubMedGoogle Scholar
  46. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643.CrossRefGoogle Scholar
  47. Tsushima, W. T., Shirakawa, N., & Geling, O. (2013). Neurocognitive functioning and symptom reporting of high school athletes following a single concussion. Applied Neuropsychology: Child, 2(1), 13–16.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Suzanne M. Czerniak
    • 1
  • Elif M. Sikoglu
    • 1
    • 2
  • Ana A. Liso Navarro
    • 1
    • 2
    • 3
  • Joseph McCafferty
    • 1
  • Jordan Eisenstock
    • 2
    • 4
  • J. Herbert Stevenson
    • 5
  • Jean A. King
    • 1
    • 2
    • 6
  • Constance M. Moore
    • 1
    • 2
    • 6
    Email author
  1. 1.Department of Psychiatry, Center for Comparative NeuroImagingUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Department of PsychiatryUniversity of Massachusetts Memorial Medical SchoolWorcesterUSA
  3. 3.Office Médico-Pédagogique, Department of PsychiatryUniversity of Geneva School of MedicineGeneva 8Switzerland
  4. 4.Department of NeurologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  5. 5.Department of Sports MedicineUniversity of Massachusetts Memorial Medical SchoolWorcesterUSA
  6. 6.Department of RadiologyUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations