Brain Imaging and Behavior

, Volume 9, Issue 2, pp 285–301 | Cite as

Modeling distinct imaging hemodynamics early after TBI: the relationship between signal amplitude and connectivity

  • John D. Medaglia
  • Andrew A. McAleavey
  • Sohayla Rostami
  • Julia Slocomb
  • Frank G. Hillary
Original Research


Over the past decade, fMRI studies of cognitive change following traumatic brain injury (TBI) have investigated blood oxygen level dependent (BOLD) activity during working memory (WM) performance in individuals in early and chronic phases of recovery. Recently, BOLD fMRI work has largely shifted to focus on WM and resting functional connectivity following TBI. However, fundamental questions in WM remain. Specifically, the effects of injury on the basic relationships between local and interregional functional neuroimaging signals during WM processing early following moderate to severe TBI have not been examined. This study employs a mixed effects model to examine prefrontal cortex and parietal lobe signal change during a WM task, the n-back, and whether there is covariance between regions of high amplitude signal change, (synchrony of elicited activity (SEA) very early following TBI. We also examined whether signal change and SEA differentially predict performance during WM. Overall, percent signal change in the right prefrontal cortex (rPFC) was and important predictor of both reaction time (RT) and SEA in early TBI and matched controls. Right prefrontal cortex (rPFC) percent signal change positively predicted SEA within and between persons regardless of injury status, suggesting that the link between these neurodynamic processes in WM-activated regions remains unaffected even very early after TBI. Additionally, rPFC activity was positively related to RT within and between persons in both groups. Right parietal (rPAR) activity was negatively related to RT within subjects in both groups. Thus, the local signal intensity of the rPFC in TBI appears to be a critical property of network functioning and performance in WM processing and may be a precursor to recruitment observed in chronic samples. The present results suggest that as much research moves toward large scale functional connectivity modeling, it will be essential to develop integrated models of how local and distant neurodynamics promote WM performance after TBI.


Reorganization Traumatic brain injury Working memory Functional MRI Cognitive control 



Traumatic brain injury


Blood oxygen level dependent


Functional magnetic resonance imaging


Right prefrontal cortex


Left prefrontal cortex


Right parietal lobe


Left parietal lobe

Supplementary material

11682_2014_9306_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 15 kb)
11682_2014_9306_MOESM2_ESM.docx (13 kb)
ESM 2 (DOCX 12 kb)
11682_2014_9306_MOESM3_ESM.docx (16 kb)
ESM 3 (DOCX 15 kb)


  1. Alivisatos, B., & Petrides, M. (1997). Functional activation of the human brain during mental rotation. Neuropsychologia, 35(2), 111–8. Scholar
  2. Ashburner, J., & Friston, K. (1997). Multimodal Image Coregistration and Partitioning- A Unified Framework. NeuroImage, 6, 209–217. Scholar
  3. Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. PNAS, 108, 7641–7646.CrossRefPubMedCentralPubMedGoogle Scholar
  4. Bates, D., Maechler, M., and Bolker, B. (2013). lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-2. Scholar
  5. Biswal, B. B., Van Kylen, J., & Hyde, J. S. (1997). Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR in biomedicine, 10(4–5), 165–70. Scholar
  6. Bombadier, C. H., Temkin, N. R., Machamer, J., & Dikmen, S. S. (2003). The natural history of drinking and alcohol-related problems after traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 84(2), 185–191.CrossRefGoogle Scholar
  7. Brett, M., Anton, J.-L., Valabregue, R., & Poline, J.-B. (2002). Region of interest analysis using an SPM toolbox. NeuroImage, 16(2).Google Scholar
  8. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. doi: 10.1196/annals.1440.011.CrossRefPubMedGoogle Scholar
  9. Chawla, D., Lumer, E. D., & Friston, K. J. (1999). The Relationship Between Synchronization Among Neuronal Populations and Their Mean Activity Levels. Neural Computation, 11(6),1389–1411. Scholar
  10. Chawla, D., Lumer, E. D., & Friston, K. J. (2000). Relating Macroscopic Measures of Brain Activity to Fast, Dynamic Neuronal Interactions. Neural Computation, 12(12), 2805–2821. Scholar
  11. Christodoulou, C. (2001). Functional magnetic resonance imaging of working memory impairment after traumatic brain injury. Journal of Neurology, Neurosurgery & Psychiatry, 71(2), 161–168.Google Scholar
  12. Christodoulou, A. G., Bauer, T. E., Kiehl, K. A., Ewing, S. W. F., Bryan, A. D., & Calhoun, V. D. (2013). A quality control method for detecting and suppressing uncorrected residual motion in fMRI studies. Magnetic Resonance Imaging, 31, 707–717.CrossRefPubMedCentralPubMedGoogle Scholar
  13. Cohen, J.D., Perlstein, W.M., Braver, T.S., Nystrom, L.E., Noll, D.C., Jonides, J., & Smith, E.E. (1997). Temporal dynamics of brain activation during a working memory task. Letters to Nature, 386, 604–608.
  14. Evers, E. A. T., Klaassen, E. B., Rombouts, S. A., Backes, W. H., & Jolles, J. (2012). The effects of sustained cognitive task performance on subsequent resting state functional connectivity in healthy young and middle-aged male schoolteachers. Brain Connectivity, 2, 102–112. doi: 10.1089/brain.2011.0060.CrossRefPubMedGoogle Scholar
  15. Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapping, 2(1–2), 56–78. doi: 10.1002/hbm.460020107.
  16. Friston, K. J., Ashburner, J., Frith, C. D., Poline, J., Heather, J. D., & Frackowiak, R. S. J. (1994). Spatial registration and normalization of images Human Brain Mapping, 2, 165–189.Google Scholar
  17. Garavan, H., Kelley, D., Rosen, A., Rao, S. M., & Stein, E. A. (2000). Practice-related functional activation changes in a working memory task. Microscopy Research and Technique, 51(1), 54–63. doi: 10.1002/1097-0029(20001001)51:1<54::AID-JEMT6>3.0.CO;2-J.CrossRefPubMedGoogle Scholar
  18. Gómez, A. J. C., Ventura Campos, N., Belenguer, A., Avila, C., & Forn, C. (2013). Regional brain atrophy and functional connectivity changes related to fatigue in multiple sclerosis. PLoS ONE, 8(10), e77914. doi: 10.1371/journal.pone.0077914.CrossRefGoogle Scholar
  19. Gordon, E. M., Breeden, A. L., Bean, S. E., & Vaidya, C. J. (2012). Working memory-related changes in functional connectivity persist beyond task disengagement. Human brain mapping, (ePub ahead of print). doi:10.1002/hbm.22230Google Scholar
  20. Hallquist, M. N., Hwang, K., & Luna, B. (2013). The nuisance of nuisance regression: Spectral misspecification I n a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivityGoogle Scholar
  21. Harris, I. M., Egan, G. F., Sonkkila, C., Tochon-Danguy, H. J., Paxinos, G., & Watson, J. D. (2000). Selective right parietal lobe activation during mental rotation: a parametric PET study. Brain, 123 (Pt 1), 65–73. Scholar
  22. Hayasaka, S. (2013). Functional connectivity networks with and without global signal correction. Frontiers in Human Neuroscience, 7, 1–11.CrossRefGoogle Scholar
  23. Hillary, F. G. (2008). Neuroimaging of working memory dysfunction and the dilemma with brain reorganization hypotheses. Journal of the International Neuropsychological Society, 14(4), 526–34. doi: 10.1017/S1355617708080788.CrossRefPubMedGoogle Scholar
  24. Hillary, F. G., & Biswal, B. B. (2007). Using fMRI technology in neurologically impaired samples: a measurement of brain or vein? The Clinical Neuropsychologist, 21(1), 58–72. doi: 10.1080/13854040601064542.CrossRefPubMedGoogle Scholar
  25. Hillary, F. G., Genova, H. M., Chiaravalloti, N. D., Rypma, B., & DeLuca, J. (2006). Prefrontal modulation of working memory performance in brain injury and disease. Human Brain Mapping, 27(11), 837–47. doi: 10.1002/hbm.20226.CrossRefPubMedGoogle Scholar
  26. Hillary, F., Genova, H., Medaglia, J., Fitzpatrick, N., Chiou, K., Wardecker, B., et al. (2010). The nature of processing speed deficits in traumatic brain injury: is less brain more? Brain Imaging and Behavior, 4(2), 141–154. doi: 10.1007/s11682-010-9094-z.CrossRefPubMedGoogle Scholar
  27. Hillary, F. G., Medaglia, J. D., Gates, K., Molenaar, P. C., Slocomb, J., Peechatka, A., et al. (2011). Examining working memory task acquisition in a disrupted neural network. Brain, 134(Pt 5), 1555–70. doi: 10.1093/brain/awr043.CrossRefPubMedGoogle Scholar
  28. Hillary, F.G., Medaglia, J.D., Gates, K.M., Molenaar, P.C., & Good, D.C. (2012). Examining network dynamics after traumatic brain injury using the extended unified SEM approach. Brain Imaging and Behavior. [Epub ahead of print]Google Scholar
  29. Hillebrand, A., Barnes, G. R., Bosboom, J. L., Berendse, H. W., & Stam, C. J. (2012). Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution. NeuroImage, 59(4), 3909–3921. doi: 10.1016/j.neuroimage.2011.11.005.CrossRefPubMedCentralPubMedGoogle Scholar
  30. Hox, J. J., & Maas, C. G. M. (2006). Multilevel models for multimethod measures. In M. Eid & E. Diener (Eds.), Multimethod measurement in psychology (pp. 269–282). Washington: American Psychological Association.CrossRefGoogle Scholar
  31. Hox, J. J., Maas, C. G. M., & Brinkhuis, M. J. S. (2010). Multilevel analysis: techniques and applications. London: Routledge Academic.Google Scholar
  32. Hox, J. J., de Leeuw, E. D., Brinkhuis, M. J. S., & Ooms, J. (2012). Multigroup and multilevel approaches to measurement equivalence. In S. Salzborn, E. Davidov, & J. Reinecke (Eds.), Methods, theories, and empirical applications in the social sciences. NY: Springer.Google Scholar
  33. Ischbeck, A., Zamarian, L., Schocke, M., & Delazer, M. (2009). Flexible transfer of knowledge in mental arithmetic—an fMRI study. NeuroImage, 44, 1103–1112.CrossRefGoogle Scholar
  34. Jansma, J. M., Ramsey, N. F., Slagter, H. A., & Kahn, R. S. (2001). Functional anatomical correlates of controlled and automatic processing. Journal of Cognitive Neuroscience, 13(6), 730–43. doi: 10.1162/08989290152541403.CrossRefPubMedGoogle Scholar
  35. Johnstone, T., Walsh, K. S. O., Greishar, L. L., Alexander, A. L., Fox, A. S., Davidson, R. J., et al. (2006). Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Human Brain Mapping, 10, 779–788.CrossRefGoogle Scholar
  36. Jolles, D. D., van Buchem, M. A., Crone, E. A., & Rombouts, S. A. R. B. (2013). Functional brain connectivity at rest changes after working memory training. Human Brain Mapping, 34(2), 396–406. doi: 10.1002/hbm.21444.CrossRefPubMedGoogle Scholar
  37. Kasahara, M., Menon, D. K., Salmond, C. H., Outtrim, J. G., Tavares, J. V. T., Carpenter, T. A., et al. (2011). Traumatic brain injury alters the functional brain network mediating working memory. Brain Injury, 25(12), 1170–87. doi: 10.3109/02699052.2011.608210.CrossRefPubMedGoogle Scholar
  38. Kirchner, W. K. (1958). Age differences in short-term retention of rapidly changing information. Journal of Experimental Psychology, 55(4), 352–358. doi: 10.1037/h0043688.CrossRefPubMedGoogle Scholar
  39. LaConte, S. M. (2011). Decoding fMRI brain states in real-time. NeuroImage, 56, 440–454.CrossRefPubMedGoogle Scholar
  40. Landau, S. M., Schumacher, E. H., Garavan, H., Druzgal, T. J., & D’Esposito, M. (2004). A functional MRI study of the influence of practice on component processes of working memory. NeuroImage, 22(1), 211–21. doi: 10.1016/j.neuroimage.2004.01.003.CrossRefPubMedGoogle Scholar
  41. Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869–78. doi: 10.1038/nature06976.CrossRefPubMedGoogle Scholar
  42. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150–7. doi: 10.1038/35084005.CrossRefPubMedGoogle Scholar
  43. Logothetis, N. K., Augath, M., Murayama, Y., Rauch, A., Sultan, F., Goense, J., et al. (2010). The effects of electrical microstimulation on cortical signal propagation. Nature Neuroscience, 13(10), 1283–91. doi: 10.1038/nn.2631.CrossRefPubMedGoogle Scholar
  44. Ma, L., Wang, B., Narayana, S., Hazeltine, E., Chen, X., Robin, D. A., et al. (2010). Changes in regional activity are accompanied with changes in inter-regional connectivity during 4 weeks motor learning. Brain Research, 1318, 64–76. doi: 10.1016/j.brainres.2009.12.073.CrossRefPubMedGoogle Scholar
  45. McAllister, T. W., Sparling, M. B., Flashman, L. A., Guerin, S. J., Mamourian, A. C., & Saykin, A. J. (2001). Differential working memory load effects after mild traumatic brain injury. NeuroImage, 14(5), 1004–1012.Google Scholar
  46. McAllister, T. W., Saykin, A. J., Flashman, L. A., Sparling, M. B., Johnson, S. C., Guerin, S. J., et al. (1999). Brain activation during working memory 1 month after mild trauamtic brain injury. Neurology, 53, 1–12.Google Scholar
  47. Medaglia, J. D., Chiou, K. S., Slocomb, J., Fitzpatrick, N. M., Wardecker, B. M., Ramanathan, D., et al. (2012). The less BOLD, the wiser: support for the latent resource hypothesis after traumatic brain injury. Human Brain Mapping, 33(4), 979–93. doi: 10.1002/hbm.21264.CrossRefPubMedGoogle Scholar
  48. Nakamura, T., Hillary, F. G., & Biswal, B. B. (2009). Resting network plasticity following brain injury. PLoS ONE, 4(12), e8220. doi: 10.1371/journal.pone.0008220.CrossRefPubMedCentralPubMedGoogle Scholar
  49. Podzebenko, K., Egan, G. F., & Watson, J. D. G. (2002). Widespread dorsal stream activation during a parametric mental rotation task, revealed with functional magnetic resonance imaging. NeuroImage, 15, 547–558.Google Scholar
  50. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlagger, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 3, 2142–2154.CrossRefGoogle Scholar
  51. Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Peterson, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage, 84, 320–341.CrossRefPubMedGoogle Scholar
  52. R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  53. Ramsey, N. F., Jansma, J. M., Jager, G., Van Raalten, T., & Kahn, R. S. (2004). Neurophysiological factors in human information processing capacity. Brain, 127(3), 517–525. doi: 10.1093/brain/awh060.CrossRefPubMedGoogle Scholar
  54. Rauch, A., Rainer, G., & Logothetis, N. K. (2008). The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proceedings of the National Academy of Sciences, 105(18), 6759–64. doi: 10.1073/pnas.0800312105.CrossRefGoogle Scholar
  55. Rogers, B. P., Morgan, V. L., Newton, A. T., & Gore, J. C. (2007). Assessing functional connectivity in the human brain by fMRI. Magnetic Resonance Imaging, 25(10), 1347–57. doi: 10.1016/j.mri.2007.03.007.CrossRefPubMedCentralPubMedGoogle Scholar
  56. Sanchez-Carrion, R., Fernandez-Espejo, D., Junque, C., Falcon, C., Bargallo, N., Roig, T., et al. (2008). A longitudinal fMRI study of working memory in severe TBI patients with diffuse axonal injury. NeuroImage, 43(3), 421–9. doi: 10.1016/j.neuroimage.2008.08.003.CrossRefPubMedGoogle Scholar
  57. Sánchez-Carrión, R., Gómez, P. V., Junqué, C., Fernández-Espejo, D., Falcon, C., Bargalló, N., et al. (2008). Frontal hypoactivation on functional magnetic resonance imaging in working memory after severe diffuse traumatic brain injury. Journal of Neurotrauma, 25(5), 479–94. doi: 10.1089/neu.2007.0417.CrossRefPubMedGoogle Scholar
  58. Scheibel, R. S., Newsome, M. R., Steinberg, J. L., Pearson, D. A., Rauch, R. A., Mao, H., & Levin, H. S. (2007). Altered brain activation during cognitive control in patients with moderate to severe traumatic brain injury. Neurorehabilitation and Neural Repair, 21(1), 36–45. doi: 10.1177/1545968306294730.CrossRefPubMedGoogle Scholar
  59. Scheibel, R. S., Newsome, M. R., Steinberg, J. L., Goldstein, F. C., Mao, H., & Levin, H. S. (2009). Effects of severity of traumatic brain injury and brain reserve on cognitive-control related brain activation. Journal of Neurotrauma, 26(9), 1447–1461. doi: 10.1089/neu.2008.0736.CrossRefPubMedCentralPubMedGoogle Scholar
  60. Seeley, W. W., Menon, V., Schatzberg, A., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27, 2349–2356.CrossRefPubMedCentralPubMedGoogle Scholar
  61. Sharp, D.J., Beckmann, C.F., Greenwood, R., Kinnunen, K.M., Bonnelle, V.,De Boissezon, X., Powell, J.H., Counsell, S.J., Patel, M.C., & Leech, R. (2011). Default mode network functional and structural connectivity after traumatic brain injury. Brain, 134(8), 2233–2247.
  62. Snijders, T. A. B. (2005). Power and sample size in multilevel linear models. In B. S. Everitt & D. C. Howell (Eds.), Encyclopedia of statistics in behavioral science (pp. 1570–1573). Chicester: Wiley.Google Scholar
  63. Snijders, T. A. B., & Bosker, R. J. (1993). Standard errors and sample sizes in two-level research. Journal of Educational Statistics, 18, 237–260.CrossRefGoogle Scholar
  64. Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: an introduction to basic and advanced multilevel modeling (2nd ed.). Los Angeles: Sage.Google Scholar
  65. Speck, O., Ernst, T., Braun, J., Koch, C., Miller, E., & Chang, L. (2000). Gender differences in the functional organization of the brain for working memory. Neuroreport, 11(11), 2581–5.
  66. Turner, G. R., & Levine, B. (2008). Augmented neural activity during executive control processing following diffuse axonal injury. Neurology, 71(11), 812–818.CrossRefPubMedCentralPubMedGoogle Scholar
  67. Turner, G., McIntosh, A., & Levine, B. (2011). Prefrontal compensatory engagement in TBI is due to altered functional engagement of existing networks and not functional reorganization. Frontiers in Systems Neuroscience, 5, 9.Google Scholar
  68. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–89.
  69. Van Den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519–534. doi: 10.1016/j.euroneuro.2010.03.008.CrossRefPubMedGoogle Scholar
  70. Voss, M. W., Prakash, R. S., Erickson, K. I., Boot, W. R., Basak, C., Neider, M. B., & Kramer, A. F. (2012). Effects of training strategies implemented in a complex videogame on functional connectivity of attentional networks. NeuroImage, 59(1), 138–48. doi: 10.1016/j.neuroimage.2011.03.052.CrossRefPubMedGoogle Scholar
  71. Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125–141. doi: 10.1089/brain.2012.0073.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • John D. Medaglia
    • 1
  • Andrew A. McAleavey
    • 1
  • Sohayla Rostami
    • 1
  • Julia Slocomb
    • 2
  • Frank G. Hillary
    • 1
  1. 1.Psychology DepartmentPennsylvania State University, State CollegeUniversity ParkUSA
  2. 2.Department of BiologyThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations