Brain Imaging and Behavior

, Volume 9, Issue 2, pp 245–254 | Cite as

Reliability of negative BOLD in ipsilateral sensorimotor areas during unimanual task activity

  • Keith M. McGregor
  • Atchar Sudhyadhom
  • Joe Nocera
  • Ari Seff
  • Bruce Crosson
  • Andrew J. Butler
Original Research


Research using functional magnetic resonance imaging has for numerous years now reported the existence of a negative blood oxygenation level dependent (BOLD) response. Based on accumulating evidence, this negative BOLD signal appears to represent an active inhibition of cortical areas in which it is found during task activity. This particularly important with respect to motor function given that it is fairly well-established that, in younger adults, the ipsilateral sensorimotor cortex exhibits negative BOLD during unimanual movements in fMRI. This interhemispheric suppression of cortical activity may have useful implications for our understanding of both basic motor function and rehabilitation of injury or disease. However, to date, we are aware of no study that has tested the reliability of evoked negative BOLD in ipsilateral sensorimotor cortex in individuals across sessions. The current study employs a unimanual finger opposition task previously shown to evoke negative BOLD in ipsilateral sensorimotor cortex across three sessions. Reliability metrics across sessions indicates that both the magnitude and location of ipsilateral sensorimotor negative BOLD response is relatively stable over each of the three sessions. Moreover, the volume of negative BOLD in ipsilateral cortex was highly correlated with volume of positive BOLD activity in the contralateral primary motor cortex. These findings show that the negative BOLD signal can be reliably evoked in unimanual task paradigms, and that the signal dynamic could represent an active suppression of the ipsilateral sensorimotor cortex originating from the contralateral motor areas.


fMRI Ipsilateral inhibition Negative BOLD Reliability Sensorimotor activity 



The contents do not represent the views of the Department of Veterans Affairs or the United States Government. This work was supported by a Department of Veteran Affairs (VA) Rehabilitation R&D Center of Excellence #F2182C, Career Development Award Level-2 (KMM) and Senior Research Career Scientist (BC: #B6364L) awards.

Conflict of interest

Keith M. McGregor, Atchar Sudhyadhom, Joe Nocera, Ari Seff, Bruce Crosson, and Andrew J. Butler report no conflicts of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Supplementary material

11682_2014_9302_Fig6_ESM.jpg (12 kb)
Supplementary Fig. 6

(JPG 12.1 kb)

11682_2014_9302_MOESM1_ESM.tif (956 kb)
High resolution image (EPS 956 mb)


  1. Addamo, P. K., Farrow, M., Hoy, K. E., Bradshaw, J. L., & Georgiou-Karistianis, N. (2007). The effects of age and attention on motor overflow production—a review. Brain Research Reviews, 54(1), 189–204.CrossRefPubMedGoogle Scholar
  2. Allison, J. D., Meador, K. J., Loring, D. W., Figueroa, R. E., & Wright, J. C. (2000). Functional MRI cerebral activation and deactivation during finger movement. Neurology, 54, 135–142.CrossRefPubMedGoogle Scholar
  3. Altman, D. G., & Bland, J. M. (1983). Measurement in medicine: the analysis of method comparison studies. The Statistician, 32, 307–317.CrossRefGoogle Scholar
  4. Berlucchi, G. (1990). Commisurotomy studies in animals. In F. Boller & J. Grafman (Eds.), Handbook of neurophysiology. Vol. 4 (pp. 9–47). Amsterdam: Elsevier.Google Scholar
  5. Birn, R. M., Diamond, J. B., Smith, M. A., & Bandettini, P. A. (2006). Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage, 31(4), 1536–1548.CrossRefPubMedGoogle Scholar
  6. Boorman, L., et al. (2010). Negative blood oxygen level dependence in the rat: a model for investigating the role of suppression in neurovascular coupling. Journal of Neuroscience, 30(12), 4285–4294.CrossRefPubMedGoogle Scholar
  7. Bright, M. G., Bianciardi, M., de Zwart, J. A., Murphy, K., Duyn, J. H., (2014) Early anti-correlated BOLD signal changes of physiologic origin. Neuroimage, 15(87), 287–96. Google Scholar
  8. Davidson, T., & Tremblay, F. (2013). Age and hemispheric differences in transcallosal inhibition between motor cortices: an ispsilateral silent period study. BMC Neuroscience, 14, 62.CrossRefPubMedCentralPubMedGoogle Scholar
  9. Devor, A., et al. (2007). Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. Journal of Neuroscience, 27(16), 4452–4459.CrossRefPubMedCentralPubMedGoogle Scholar
  10. Diedrichsen, J., Wiestler, T., & Krakauer, J. W. (2013). Two distinct ipsilateral cortical representations for individuated finger movements. Cerebral Cortex, 23(6), 1362–1377.CrossRefPubMedCentralPubMedGoogle Scholar
  11. Diekhoff, S., Uludağ, K., Sparing, R., Tittgemeyer, M., Cavuşoğlu, M., von Cramon, D, Y., et al. (2011) Functional localization in the human brain: Gradient-Echo, Spin-Echo, and arterial spin-labeling fMRI compared with neuronavigated TMS. Hum Brain Mapp, 32(3), 341–57. Google Scholar
  12. Ferbert, A., Priori, A., Rothwell, J. C., Day, B. L., Colebatch, J. G., & Marsden, C. D. (1992). Interhemispheric inhibition of the human motor cortex. Journal of Physiology, 453(1), 525–546.CrossRefPubMedCentralPubMedGoogle Scholar
  13. Fesl, G., Braun, B., Rau, S., Wiesmann, M., Ruge, M., Bruhns, P., et al. (2008). Is the center of mass (COM) a reliable parameter for the localization of brain function in fMRI? Eur Radiol, 18(5), 1031–7.Google Scholar
  14. Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 15, 870–878.CrossRefPubMedGoogle Scholar
  15. Goense, J., Merkle, H., & Logothetis, N. K. (2012). High-resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses. Neuron, 76(3), 629–639.CrossRefPubMedGoogle Scholar
  16. Hayes, D. J., & Huxtable, A. G. (2012). Interpreting deactivations in neuroimaging. Frontiers in Psychology, 3, 27.CrossRefPubMedCentralPubMedGoogle Scholar
  17. Hlushchuk, Y., & Hari, R. (2006). Transient suppression of ipsilateral primary somatosensory cortex during tactile finger stimulation. Journal of Neuroscience, 26, 5819–5824.CrossRefPubMedGoogle Scholar
  18. Hoy, K. E., Fitzgerald, P. B., Bradshaw, J. L., Armatas, C. A., & Georgiou-Karistianis, N. (2004). Investigating the cortical origins of motor overflow. Brain Research Reviews, 46(3), 315–327.CrossRefPubMedGoogle Scholar
  19. Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles, 37, 547–579.Google Scholar
  20. Jancke, L., Shah, N. J., & Peters, M. (2000). Cortical activations in primary and secondary motor areas for complex bimanual movements in professional pianists. Brain Research. Cognitive Brain Research, 10, 177–183.CrossRefPubMedGoogle Scholar
  21. Kastrup, A., Baudewig, J., Schnaudigel, S., Huonker, R., Becker, L., Sohns, J. M., et al. (2008). Behavioral correlates of negative BOLD signal changes in the primary somatosensory cortex. NeuroImage, 41, 1364–1371.CrossRefPubMedGoogle Scholar
  22. Klingner, C. M., Hasler, C., Brodoehl, S., & Witte, O. W. (2010). Dependence of the negative BOLD response on somatosensory stimulus intensity. NeuroImage, 53, 189–195.CrossRefPubMedGoogle Scholar
  23. Klingner, C. M., Huonker, R., Flemming, S., Hasler, C., Brodoehl, S., Preul, C., et al. (2011). Functional deactivations: multiple ipsilateral brain areas engaged in the processing of somatosensory information. Human Brain Mapping, 32, 127–140.CrossRefPubMedGoogle Scholar
  24. Kobayashi, M., Hutchinson, S., Schlaug, G., Pascual-Leone, A. (2003). Ipsilateral motor cortex activation on functional magnetic resonance imaging during unilateral hand movements is related to interhemispheric interactions. Neuroimage, 20(4), 2259–2270.Google Scholar
  25. Krampe, R. T., Engbert, R., & Kliegl, R. (2002). The effects of expertise and age on rhythm production: adaptations to timing and sequencing constraints. Brain and Cognition, 48, 179–194.CrossRefPubMedGoogle Scholar
  26. Lenzi, D., Conte, A., Mainero, C., Frasca, V., Fubelli, F., Totaro, P., et al. (2007). Effect of corpus callosum damage on ipsilateral motor activation in patients with multiple sclerosis: a functional and anatomical study. Human Brain Mapping, 28, 636–644.CrossRefPubMedGoogle Scholar
  27. Maitra, R. (2009). A re-defined and generalized percent-overlap-of-activation measure for studies of fMRI reproducibility and its use in identifying outlier activation maps. NeuroImage, 50(1), 124–135. doi: 10.1016/j.neuroimage.2009.11.070.CrossRefPubMedGoogle Scholar
  28. Malcolm, M. P., Triggs, W. J., Light, K. E., Shechtman, O., Khandekar, G., & Gonzalez Rothi, L. J. (2006). Reliability of motor cortex transcranial magnetic stimulation in four muscle representations. Clinical Neurophysiology, 117, 1037–1046.CrossRefPubMedGoogle Scholar
  29. Manson, S. C., Palace, J., Frank, J. A., & Matthews, P. M. (2006). Loss of interhemispheric inhibition in patients with multiple sclerosis is related to corpus callosum atrophy. Experimental Brain Research, 174, 728–733.CrossRefPubMedGoogle Scholar
  30. Manson, S. C., Wegner, C., Filippi, M., Barkhof, F., Beckmann, C., Ciccarelli, O., et al. (2008). Impairment of movement-associated brain deactivation in multiple sclerosis: further evidence for a functional pathology of interhemispheric neuronal inhibition. Experimental Brain Research, 187, 25–31.CrossRefPubMedCentralPubMedGoogle Scholar
  31. Mayston, M. J., Harrison, L. M., Quinton, R., Stephens, J. A., Krams, M., Bouloux, P. M. (1997). Mirror movements in X-linked Kallmann’s syndrome. I. A neurophysiological study. Brain, 120(Pt 7), 1199–1216.Google Scholar
  32. Mayston, M. J., Harrison, L. M., & Stephens, J. A. (1999). A neurophysiological study of mirror movements in adults and children. Annals of Neurology, 45(5), 583–594.CrossRefPubMedGoogle Scholar
  33. McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1(1), 30.CrossRefGoogle Scholar
  34. McGregor, K., Craggs, J., Benjamin, M., Crosson, B., & White, K. (2009). Age-related changes in motor control during unimanual movements. Brain Imaging and Behavior, 3, 317–331.CrossRefGoogle Scholar
  35. McGregor, K. M., Zlatar, Z., Kleim, E., Sudhyadhom, A., Bauer, A., Phan, S., et al. (2011). Physical activity and neural correlates of aging: a combined TMS/fMRI study. Behavioural Brain Research, 222, 158–168.CrossRefPubMedCentralPubMedGoogle Scholar
  36. McGregor, K., Heilman, K., Nocera, J., Patten, C., Manini, T., Crosson, B., et al. (2012a). Aging, aerobic activity and interhemispheric communication. Brain Sciences, 2, 634–648.CrossRefPubMedCentralPubMedGoogle Scholar
  37. McGregor, K. M., Carpenter, H., Kleim, E., Sudhyadhom, A., White, K. D., Butler, A. J., et al. (2012b). Motor map reliability and aging: a TMS/fMRI study. Experimental Brain Research, 219, 97–106.CrossRefPubMedGoogle Scholar
  38. McGregor, K. M., Nocera, J. R., Sudhyadhom, A., Patten, C., Manini, T. M., Kleim, J. A., et al. (2013). Effects of aerobic fitness on aging-related changes of interhemispheric inhibition and motor performance. Frontiers in Aging Neuroscience, 5, 66.CrossRefPubMedCentralPubMedGoogle Scholar
  39. Meyer, B. U., Roricht, S., & Woiciechowsky, C. (1998). Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices. Annals of Neurology, 43, 360–369.CrossRefPubMedGoogle Scholar
  40. Newton, J. M., Sunderland, A., & Gowland, P. A. (2005). fMRI signal decreases in ipsilateral primary motor cortex during unilateral hand movements are related to duration and side of movement. NeuroImage, 24, 1080–1087.CrossRefPubMedGoogle Scholar
  41. Northoff, G., Walter, M., Schulte, R. F., Beck, J., Dydak, U., Henning, A., … & Boesiger, P. (2007). GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nature Neuroscience, 10(12), 1515–1517.Google Scholar
  42. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia, 9, 97–113.CrossRefPubMedGoogle Scholar
  43. Ottaviani, D., Tiple, D., Suppa, A., Colosimo, C., Fabbrini, G., Cincotta, M., et al. (2008). Mirror movements in patients with Parkinson’s disease. Movement Disorders, 23(2), 253–258.CrossRefPubMedGoogle Scholar
  44. Portney, L. G., & Watkins, M. P. (1993). Chapter 26: Statistical measures of reliability. Foundation of clinical research: Applications to practice. Norwich: Appleton and Lange.Google Scholar
  45. Real, R. (1999). Tables of significant values of Jaccard’s index of similarity. Miscellaneous Zoologica, 22(1), 29–40.Google Scholar
  46. Reddy, H., Lassonde, M., Bemasconi, N., Bemasconi, A., Matthews, P. M., Andermann, F., et al. (2000). An fMRI study of the lateralization of motor cortex activation in acallosal patients. Neuroreport, 11(11), 2409–2413.CrossRefPubMedGoogle Scholar
  47. Riecker, A., Groschel, K., Ackermann, H., Steinbrink, C., Witte, O., & Kastrup, A. (2006). Functional significance of age-related differences in motor activation patterns. NeuroImage, 32, 1345–1354.CrossRefPubMedGoogle Scholar
  48. Saad, Z. S., Glen, D. R., Chen, G., Beauchamp, M. S., Desai, R., & Cox, R. W. (2009). A new method for improving functional-to-structural MRI alignment using local Pearson correlation. NeuroImage, 44, 839–848.CrossRefPubMedCentralPubMedGoogle Scholar
  49. Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychol Rev, 103(3), 403–28.Google Scholar
  50. Sattler, V., Dickler, M., Michaud, M., Meunier, S., Simonetta-Moreau, M. (2013). Does abnormal interhemispheric inhibition play a role in mirror dystonia? Movement Disorders.Google Scholar
  51. Sherrington, C. S. (1932). Nobel Prize Lecture. Accessed 28 April 2014.
  52. Shmuel, A., Yacoub, E., Pfeuffer, J., Van de Moortele, P. F., Adriany, G., Hu, X., et al. (2002). Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron, 36(6), 1195–1210.CrossRefPubMedGoogle Scholar
  53. Shmuel, A., Augath, M., Oeltermann, A., & Logothetis, N. K. (2006). Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nature Neuroscience, 9(4), 569–577.CrossRefPubMedGoogle Scholar
  54. Smith, A. T., et al. (2004). Negative BOLD in the visual cortex: evidence against blood stealing. Human Brain Mapping, 21(4), 213–220.CrossRefPubMedGoogle Scholar
  55. Stagg, C. J., Bestmann, S., Constantinescu, A. O., Moreno, L. M., Allman, C., Mekle, R., et al. (2011) Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. Journal of Physiology, 589(Pt 23), 5845–55.Google Scholar
  56. Stefanovic, B., Warnking, J. M., & Pike, G. B. (2004). Hemodynamic and metabolic responses to neuronal inhibition. NeuroImage, 22, 771–778.CrossRefPubMedGoogle Scholar
  57. Talelli, P., Waddingham, W., Ewas, A., Rothwell, J. C., & Ward, N. S. (2008). The effect of age on task-related modulation of interhemispheric balance. Experimental Brain Research, 186, 59–66.CrossRefPubMedCentralPubMedGoogle Scholar
  58. Verstynen, T., Spencer, R., Stinear, C. M., Konkle, T., Diedrichsen, J., Byblow, W. D., et al. (2007). Ipsilateral corticospinal projections do not predict congenital mirror movements: a case report. Neuropsychologia, 45, 844–852.CrossRefPubMedCentralPubMedGoogle Scholar
  59. Yousry, T. A., Schmid, U. D., Alkadhi, H., Schmidt, D., Peraud, A., Buettner, A., et al. (1997). Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain, 120(Pt 1), 141–57.Google Scholar
  60. Yuan, H., Perdoni, C., Yang, L., & He, B. (2011). Differential electrophysiological coupling for positive and negative BOLD responses during unilateral hand movements. The Journal of Neuroscience, 31, 9585–9593.CrossRefPubMedCentralPubMedGoogle Scholar
  61. Zeharia, N., Hertz, U., Flash, T., & Amedi, A. (2012). Negative blood oxygenation level dependent homunculus and somatotopic information in primary motor cortex and supplementary motor area. Proceedings of the National Academy of Sciences of the United States of America, 109, 18565–18570.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2014

Authors and Affiliations

  • Keith M. McGregor
    • 1
    • 2
  • Atchar Sudhyadhom
    • 3
  • Joe Nocera
    • 1
    • 2
  • Ari Seff
    • 1
  • Bruce Crosson
    • 1
    • 2
  • Andrew J. Butler
    • 1
    • 4
  1. 1.Department of Veterans Affairs Center for Visual and Neurocognitive RehabilitationAtlantaUSA
  2. 2.Department of NeurologyEmory UniversityDecaturUSA
  3. 3.Department of Radiation OncologyUniversity of CaliforniaSan FranciscoUSA
  4. 4.Department of Physical TherapyGeorgia State UniversityAtlantaUSA

Personalised recommendations