Brain Imaging and Behavior

, Volume 9, Issue 2, pp 223–235 | Cite as

The reorganization of motor network in hemidystonia from the perspective of deep brain stimulation

  • Victoria Gonzalez
  • Emmanuelle Le Bars
  • Laura Cif
  • Liesjet E. H. van Dokkum
  • Isabelle Laffont
  • Alain Bonafé
  • Nicolas Menjot de Champfleur
  • Michel Zanca
  • Philippe Coubes
Original Research


Hemidystonia is usually ‘secondary’ to structural lesions within the cortico-striato-pallido-thalamic or the cerebello-thalamo-cortical loops. Globus pallidus internus Deep Brain Stimulation (GPi DBS) is a validated technique in the treatment of primary dystonia and still under assessment for secondary dystonia. Results of DBS in hemidystonia are limited and heterogeneous. Further knowledge concerning motor network organization after focal brain lesions might contribute to the understanding of this mitigated response to DBS and to the refinement of DBS indications and techniques in secondary dystonia. This study aimed to identify movement-related functional magnetic resonance imaging (fMRI) activation patterns in a group of hemidystonic patients in comparison to healthy controls (HC). Further analysis assessed recruitment pattern in different patient subgroups defined according to clinical and radiological criteria relevant to GPi DBS eligibility (hyperkinetic/hypokinetic and prepallidal/postpallidal). Eleven patients and nine HC underwent fMRI with a block-design alternating active and rest conditions. The motor paradigm consisted of self-paced elbow flexion-extension movements. The main results were as follows: single-subject studies revealed several activation patterns involving motor-related network regions; both ipsilesional and contralesional hemispheres showed abnormal patterns of activity; compared with HC, hemidystonic patients showed decreased brain activity in ipsilesional thalamus, pallidal and temporal areas during affected arm task execution; ‘hypokinetic’ subgroup was commonly related to widespread bilateral overactivity. This study provides additional arguments for case-by-case assessment of DBS surgery indication and target selection in hemidystonia. Single-lead approach might be unable to modulate a highly disorganized network activity in certain patients with this clinical syndrome.


Hemidystonia Secondary dystonia Functional MRI Deep brain stimulation 



The authors thank also the patients and the families who participated in the study.

Conflict of interest

Financial disclosure related to research covered in this article: No conflict of interest related to this work is reported by the authors.

Full financial disclosure: V. Gonzalez, L. Cif and P. Coubes received lecture fees from Medtronic Company. E. Le Bars, L. EH van Dokkum, I. Laffont, N. Menjot de Champfleur, A. Bonafé and M. Zanca: report no disclosures.

Ethical standards

This research has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki. Informed written consent was provided by all subjects participating in the study.

Supplementary material

11682_2014_9300_MOESM1_ESM.docx (43 kb)
ESM_1 Table 4 and 5 Within-subject studies: anatomic MNI coordinates of significant clusters with dystonic and non-dystonic movements (DOCX 43.3 kb)
11682_2014_9300_MOESM2_ESM.docx (32 kb)
ESM_2 Table 6 One-sample t tests Group analysis within healthy control and hemidystonic groups: anatomic MNI coordinates of significant clusters with dystonic and non-dystonic movements (DOCX 32.4 kb)
11682_2014_9300_Fig3_ESM.jpg (19 kb)

Fig. 3 Task-related activity patterns in single-subject studies (P FWE-corr<0.05) with dystonic (right) arm movements: a) healthy control (contralateral SMC activity); b) hyperkinetic subgroup patient (contralateral lobule VII cerebellar activity); c) hyperkinetic subgroup (contralateral SMC, SMA, lobule VII cerebellar activity); d, e, f) Hypokinetic subgroup patients (bilateral activity observed in three patients) (JPEG 19 kb)

11682_2014_9300_MOESM3_ESM.tif (1 mb)
High Resolution Image (TIFF 1030 kb)


  1. Albanese, A., Bhatia, K., Bressman, S. B., Delong, M. R., Fahn, S., Fung, V. S., et al. (2013). Phenomenology and classification of dystonia: a consensus update. Movement Disorders, 28(7), 863–873. doi: 10.1002/mds.25475.CrossRefPubMedCentralPubMedGoogle Scholar
  2. Avanzino, L., Martino, D., Martino, I., Pelosin, E., Vicario, C. M., Bove, M., et al. (2013). Temporal expectation in focal hand dystonia. Brain, 136(Pt 2), 444–454. doi: 10.1093/brain/aws328.CrossRefPubMedGoogle Scholar
  3. Beck, S., Houdayer, E., Richardson, S. P., & Hallett, M. (2009). The role of inhibition from the left dorsal premotor cortex in right-sided focal hand dystonia. Brain Stimulation, 2(4), 208–214. doi: 10.1016/j.brs.2009.03.004.CrossRefPubMedCentralPubMedGoogle Scholar
  4. Bostan, A. C., Dum, R. P., & Strick, P. L. (2010). The basal ganglia communicate with the cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8452–8456. doi: 10.1073/pnas.1000496107.CrossRefPubMedCentralPubMedGoogle Scholar
  5. Ceballos-Baumann, A. O., Passingham, R. E., Marsden, C. D., & Brooks, D. J. (1995). Motor reorganization in acquired hemidystonia. Annals of Neurology, 37(6), 746–757. doi: 10.1002/ana.410370608.CrossRefPubMedGoogle Scholar
  6. Chuang, C., Fahn, S., & Frucht, S. J. (2002). The natural history and treatment of acquired hemidystonia: report of 33 cases and review of the literature. Journal of Neurology, Neurosurgery & Psychiatry, 72(1), 59–67.CrossRefGoogle Scholar
  7. Coubes, P., Roubertie, A., Vayssiere, N., Hemm, S., & Echenne, B. (2000). Treatment of DYT1-generalised dystonia by stimulation of the internal globus pallidus. Lancet, 355(9222), 2220–2221. doi: 10.1016/S0140-6736(00)02410-7.CrossRefPubMedGoogle Scholar
  8. Cramer, S. C. (1999). Stroke recovery. Lessons from functional MR imaging and other methods of human brain mapping. Physical Medicine and Rehabilitation Clinics of North America, 10(4), 875–886. ix.PubMedGoogle Scholar
  9. Detante, O., Vercueil, L., Thobois, S., Broussolle, E., Costes, N., Lavenne, F., et al. (2004). Globus pallidus internus stimulation in primary generalized dystonia: a H215O PET study. Brain, 127(Pt 8), 1899–1908. doi: 10.1093/brain/awh213.CrossRefPubMedGoogle Scholar
  10. Didelot, A., Mauguière, F., Redouté, J., Bouvard, S., Lothe, A., Reilhac, A., et al. (2010). Voxel-based analysis of asymmetry index maps increases the specificity of 18F-MPPF PET abnormalities for localizing the epileptogenic zone in temporal lobe epilepsies. Journal of Nuclear Medicine, 51(11), 1732–1739. doi: 10.2967/jnumed.109.070938.CrossRefPubMedGoogle Scholar
  11. Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., et al. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage, 25(4), 1325–1335. doi: 10.1016/j.neuroimage.2004.12.034.CrossRefPubMedGoogle Scholar
  12. Eltahawy, H. A., Saint-Cyr, J., Giladi, N., Lang, A. E., & Lozano, A. M. (2004). Primary dystonia is more responsive than secondary dystonia to pallidal interventions: outcome after pallidotomy or pallidal deep brain stimulation. Neurosurgery, 54(3), 613–619. discussion 619–621.CrossRefPubMedGoogle Scholar
  13. Fahn, S. (1988). Concept and classification of dystonia. Advances in Neurology, 50, 1–8.CrossRefPubMedGoogle Scholar
  14. Fuller, J., Prescott, I. A., Moro, E., Toda, H., Lozano, A., & Hutchison, W. D. (2013). Pallidal deep brain stimulation for a case of hemidystonia secondary to a striatal stroke. Stereotactic and Functional Neurosurgery, 91(3), 190–197. doi: 10.1159/000345113.CrossRefPubMedGoogle Scholar
  15. Gimeno, H., Tustin, K., Selway, R., & Lin, J. P. (2012). Beyond the Burke-Fahn-Marsden Dystonia Rating Scale: deep brain stimulation in childhood secondary dystonia. European Journal of Paediatric Neurology, 16(5), 501–508. doi: 10.1016/j.ejpn.2011.12.014.CrossRefPubMedGoogle Scholar
  16. Hamasaki, T., Yamada, K., & Kuratsu, J. (2008). Hemidystonia secondary to thalamic hemorrhage treated with GPi stimulation. Movement Disorders, 23(12), 1762–1766. doi: 10.1002/mds.22183.CrossRefPubMedGoogle Scholar
  17. Hanakawa, T., Dimyan, M. A., & Hallett, M. (2008). Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cerebral Cortex, 18(12), 2775–2788. doi: 10.1093/cercor/bhn036.CrossRefPubMedCentralPubMedGoogle Scholar
  18. Hasegawa, H., Mundil, N., Samuel, M., Jarosz, J., & Ashkan, K. (2009). The treatment of persistent vascular hemidystonia-hemiballismus with unilateral GPi deep brain stimulation. Movement Disorders, 24(11), 1697–1698. doi: 10.1002/mds.22598.CrossRefPubMedGoogle Scholar
  19. Hoshi, E., Tremblay, L., Féger, J., Carras, P. L., & Strick, P. L. (2005). The cerebellum communicates with the basal ganglia. Nature Neuroscience, 8(11), 1491–1493. doi: 10.1038/nn1544.CrossRefPubMedGoogle Scholar
  20. Huang, Y. Z., Rothwell, J. C., Lu, C. S., Wang, J., & Chen, R. S. (2010). Restoration of motor inhibition through an abnormal premotor-motor connection in dystonia. Movement Disorders, 25(6), 696–703. doi: 10.1002/mds.22814.CrossRefPubMedCentralPubMedGoogle Scholar
  21. Isaias, I. U., Alterman, R. L., & Tagliati, M. (2009). Deep brain stimulation for primary generalized dystonia: long-term outcomes. Archives of Neurology, 66(4), 465–470. doi: 10.1001/archneurol.2009.20.CrossRefPubMedGoogle Scholar
  22. Islam, T., Kupsch, A., Bruhn, H., Scheurig, C., Schmidt, S., & Hoffmann, K. T. (2009). Decreased bilateral cortical representation patterns in writer’s cramp: a functional magnetic resonance imaging study at 3.0 T. Neurological Sciences, 30(3), 219–226. doi: 10.1007/s10072-009-0045-7.CrossRefPubMedGoogle Scholar
  23. Johansen-Berg, H., Rushworth, M. F., Bogdanovic, M. D., Kischka, U., Wimalaratna, S., & Matthews, P. M. (2002). The role of ipsilateral premotor cortex in hand movement after stroke. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14518–14523. doi: 10.1073/pnas.222536799.CrossRefPubMedCentralPubMedGoogle Scholar
  24. Kahan, J., Mancini, L., Urner, M., Friston, K., Hariz, M., Holl, E., et al. (2012). Therapeutic subthalamic nucleus deep brain stimulation reverses cortico-thalamic coupling during voluntary movements in Parkinson’s disease. PLoS One, 7(12), e50270. doi: 10.1371/journal.pone.0050270.CrossRefPubMedCentralPubMedGoogle Scholar
  25. Kang, D. W., Kang, J. H., Lee, M. S., & Chang, J. W. (2010). Posttraumatic hemidystonia treated with unilateral globus pallidus interna stimulation: long-term follow-up and radiologic features. Neuromodulation, 13(4), 261–264. doi: 10.1111/j.1525-1403.2010.00306.x.CrossRefPubMedGoogle Scholar
  26. Karbe, H., Holthoff, V. A., Rudolf, J., Herholz, K., & Heiss, W. D. (1992). Positron emission tomography demonstrates frontal cortex and basal ganglia hypometabolism in dystonia. Neurology, 42(8), 1540–1544.CrossRefPubMedGoogle Scholar
  27. Katsakiori, P. F., Kefalopoulou, Z., Markaki, E., Paschali, A., Ellul, J., Kagadis, G. C., et al. (2009). Deep brain stimulation for secondary dystonia: results in 8 patients. Acta Neurochirurgica (Wien), 151(5), 473–478. doi: 10.1007/s00701-009-0281-x. discussion 478.CrossRefGoogle Scholar
  28. Kim, J. P., Chang, W. S., & Chang, J. W. (2012). The long-term surgical outcomes of secondary hemidystonia associated with post-traumatic brain injury. Acta Neurochirurgica (Wien), 154(5), 823–830. doi: 10.1007/s00701-012-1306-4.CrossRefGoogle Scholar
  29. Koch, G., Schneider, S., Bäumer, T., Franca, M., Münchau, A., Cheeran, B., et al. (2008). Altered dorsal premotor-motor interhemispheric pathway activity in focal arm dystonia. Movement Disorders, 23(5), 660–668. doi: 10.1002/mds.21881.CrossRefPubMedGoogle Scholar
  30. Kojovic, M., Pareés, I., Kassavetis, P., Palomar, F. J., Mir, P., Teo, J. T., et al. (2013). Secondary and primary dystonia: pathophysiological differences. Brain, 136(Pt 7), 2038–2049. doi: 10.1093/brain/awt150.CrossRefPubMedGoogle Scholar
  31. Koy, A., Hellmich, M., Pauls, K. A., Marks, W., Lin, J. P., Fricke, O., et al. (2013). Effects of deep brain stimulation in dyskinetic cerebral palsy: a meta-analysis. Movement Disorders, 28(5), 647–654. doi: 10.1002/mds.25339.CrossRefPubMedGoogle Scholar
  32. Krauss, J. K., Pohle, T., Weber, S., Ozdoba, C., & Burgunder, J. M. (1999). Bilateral stimulation of globus pallidus internus for treatment of cervical dystonia. Lancet, 354(9181), 837–838. doi: 10.1016/S0140-6736(99)80022-1.CrossRefPubMedGoogle Scholar
  33. Krystkowiak, P., Martinat, P., Defebvre, L., Pruvo, J. P., Leys, D., & Destée, A. (1998). Dystonia after striatopallidal and thalamic stroke: clinicoradiological correlations and pathophysiological mechanisms. Journal of Neurology, Neurosurgery & Psychiatry, 65(5), 703–708.CrossRefGoogle Scholar
  34. Kumar, R., Dagher, A., Hutchison, W. D., Lang, A. E., & Lozano, A. M. (1999). Globus pallidus deep brain stimulation for generalized dystonia: clinical and PET investigation. Neurology, 53(4), 871–874.CrossRefPubMedGoogle Scholar
  35. Lehéricy, S., Vidailhet, M., Dormont, D., Piérot, L., Chiras, J., Mazetti, P., et al. (1996). Striatopallidal and thalamic dystonia. A magnetic resonance imaging anatomoclinical study. Archives of Neurology, 53(3), 241–250.CrossRefPubMedGoogle Scholar
  36. Lehéricy, S., Gerardin, E., Poline, J. B., Meunier, S., Van de Moortele, P. F., Le Bihan, D., et al. (2004). Motor execution and imagination networks in post-stroke dystonia. Neuroreport, 15(12), 1887–1890.CrossRefPubMedGoogle Scholar
  37. Lehéricy, S., Tijssen, M. A., Vidailhet, M., Kaji, R., & Meunier, S. (2013). The anatomical basis of dystonia: current view using neuroimaging. Movement Disorders, 28(7), 944–957. doi: 10.1002/mds.25527.CrossRefPubMedGoogle Scholar
  38. Loher, T. J., Hasdemir, M. G., Burgunder, J. M., & Krauss, J. K. (2000). Long-term follow-up study of chronic globus pallidus internus stimulation for posttraumatic hemidystonia. Journal of Neurosurgery, 92(3), 457–460. doi: 10.3171/jns.2000.92.3.0457.CrossRefPubMedGoogle Scholar
  39. Loher, T. J., Capelle, H. H., Kaelin-Lang, A., Weber, S., Weigel, R., Burgunder, J. M., et al. (2008). Deep brain stimulation for dystonia: outcome at long-term follow-up. Journal of Neurology, 255(6), 881–884. doi: 10.1007/s00415-008-0798-6.CrossRefPubMedGoogle Scholar
  40. Luft, A. R., Waller, S., Forrester, L., Smith, G. V., Whitall, J., Macko, R. F., et al. (2004). Lesion location alters brain activation in chronically impaired stroke survivors. NeuroImage, 21(3), 924–935. doi: 10.1016/j.neuroimage.2003.10.026.CrossRefPubMedGoogle Scholar
  41. Manto, M., Bower, J. M., Conforto, A. B., Delgado-García, J. M., da Guarda, S. N., Gerwig, M., et al. (2012). Consensus paper: roles of the cerebellum in motor control–the diversity of ideas on cerebellar involvement in movement. Cerebellum, 11(2), 457–487. doi: 10.1007/s12311-011-0331-9.CrossRefPubMedCentralPubMedGoogle Scholar
  42. Marsden, C. D., Obeso, J. A., Zarranz, J. J., & Lang, A. E. (1985). The anatomical basis of symptomatic hemidystonia. Brain, 108(Pt 2), 463–483.CrossRefPubMedGoogle Scholar
  43. McClelland, V., Mills, K., Siddiqui, A., Selway, R., & Lin, J. P. (2011). Central motor conduction studies and diagnostic magnetic resonance imaging in children with severe primary and secondary dystonia. Developmental Medicine and Child Neurology, 53(8), 757–763. doi: 10.1111/j.1469-8749.2011.03981.x.CrossRefPubMedGoogle Scholar
  44. Neychev, V. K., Gross, R. E., Lehéricy, S., Hess, E. J., & Jinnah, H. A. (2011). The functional neuroanatomy of dystonia. Neurobiology of Disease, 42(2), 185–201. doi: 10.1016/j.nbd.2011.01.026.CrossRefPubMedCentralPubMedGoogle Scholar
  45. Obeso, J. A., & Giménez-Roldán, S. (1988). Clinicopathological correlation in symptomatic dystonia. Advances in Neurology, 50, 113–122.PubMedGoogle Scholar
  46. Perlmutter, J. S., & Raichle, M. E. (1984). Pure hemidystonia with basal ganglion abnormalities on positron emission tomography. Annals of Neurology, 15(3), 228–233. doi: 10.1002/ana.410150303.CrossRefPubMedGoogle Scholar
  47. Pettigrew, L. C., & Jankovic, J. (1985). Hemidystonia: a report of 22 patients and a review of the literature. Journal of Neurology, Neurosurgery & Psychiatry, 48(7), 650–657.CrossRefGoogle Scholar
  48. Sadnicka, A., Hoffland, B. S., Bhatia, K. P., van de Warrenburg, B. P., & Edwards, M. J. (2012). The cerebellum in dystonia - help or hindrance? Clinical Neurophysiology, 123(1), 65–70. doi: 10.1016/j.clinph.2011.04.027.CrossRefPubMedGoogle Scholar
  49. Thobois, S., Ballanger, B., Xie-Brustolin, J., Damier, P., Durif, F., Azulay, J. P., et al. (2008). Globus pallidus stimulation reduces frontal hyperactivity in tardive dystonia. Journal of Cerebral Blood Flow and Metabolism, 28(6), 1127–1138. doi: 10.1038/sj.jcbfm.9600610.CrossRefPubMedGoogle Scholar
  50. Tsang, E. W., Hamani, C., Moro, E., Mazzella, F., Lozano, A. M., Yeh, I. J., et al. (2012). Prominent 5–18 Hz oscillations in the pallidal-thalamic circuit in secondary dystonia. Neurology, 78(5), 361–363. doi: 10.1212/WNL.0b013e318245293f.CrossRefPubMedCentralPubMedGoogle Scholar
  51. Vidailhet, M., Vercueil, L., Houeto, J. L., Krystkowiak, P., Benabid, A. L., Cornu, P., et al. (2005). Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. New England Journal of Medicine, 352(5), 459–467. doi: 10.1056/NEJMoa042187.CrossRefPubMedGoogle Scholar
  52. Vidailhet, M., Yelnik, J., Lagrange, C., Fraix, V., Grabli, D., Thobois, S., et al. (2009). Bilateral pallidal deep brain stimulation for the treatment of patients with dystonia-choreoathetosis cerebral palsy: a prospective pilot study. Lancet Neurology, 8(8), 709–717. doi: 10.1016/S1474-4422(09)70151-6.CrossRefGoogle Scholar
  53. Vidailhet, M., Jutras, M. F., Grabli, D., & Roze, E. (2013). Deep brain stimulation for dystonia. Journal of Neurology, Neurosurgery & Psychiatry, 84(9), 1029–1042. doi: 10.1136/jnnp-2011-301714.CrossRefGoogle Scholar
  54. Ward, N. S. (2006). The neural substrates of motor recovery after focal damage to the central nervous system. Archives of Physical Medicine and Rehabilitation, 87(12 Suppl 2), S30–S35. doi: 10.1016/j.apmr.2006.08.334.PubMedGoogle Scholar
  55. Ward, N. S., Brown, M. M., Thompson, A. J., & Frackowiak, R. S. (2003a). Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain, 126(Pt 11), 2476–2496. doi: 10.1093/brain/awg245.CrossRefPubMedCentralPubMedGoogle Scholar
  56. Ward, N. S., Brown, M. M., Thompson, A. J., & Frackowiak, R. S. (2003b). Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain, 126(Pt 6), 1430–1448.CrossRefPubMedCentralPubMedGoogle Scholar
  57. Witt, J., Starr, P. A., & Ostrem, J. L. (2013). Use of pallidal deep brain stimulation in postinfarct hemidystonia. Stereotactic and Functional Neurosurgery, 91(4), 243–247. doi: 10.1159/000345262.CrossRefPubMedGoogle Scholar
  58. Wu, C. C., Fairhall, S. L., McNair, N. A., Hamm, J. P., Kirk, I. J., Cunnington, R., et al. (2010). Impaired sensorimotor integration in focal hand dystonia patients in the absence of symptoms. Journal of Neurology, Neurosurgery & Psychiatry, 81(6), 659–665. doi: 10.1136/jnnp.2009.185637.CrossRefGoogle Scholar
  59. Zhang, J. G., Zhang, K., Wang, Z. C., Ge, M., & Ma, Y. (2006). Deep brain stimulation in the treatment of secondary dystonia. Chinese Medical Journal, 119(24), 2069–2074.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Victoria Gonzalez
    • 1
    • 2
    • 3
  • Emmanuelle Le Bars
    • 3
    • 4
  • Laura Cif
    • 1
    • 2
    • 3
  • Liesjet E. H. van Dokkum
    • 3
    • 5
  • Isabelle Laffont
    • 3
    • 6
  • Alain Bonafé
    • 3
    • 4
  • Nicolas Menjot de Champfleur
    • 3
    • 4
  • Michel Zanca
    • 3
    • 7
  • Philippe Coubes
    • 1
    • 2
    • 3
  1. 1.Functional Neurosurgery Unit, Department of Neurosurgery, Hôpital Gui de ChauliacUniversity Hospital of MontpellierMontpellier Cedex 5France
  2. 2.Institut de Génomique FonctionnelleINSERM, UMR_S 661, CNRS UMR 5203MontpellierFrance
  3. 3.University of Montpellier 1MontpellierFrance
  4. 4.Neuroradiology DepartmentUniversity Hospital of MontpellierMontpellierFrance
  5. 5.Movement to HealthEuromovMontpellierFrance
  6. 6.Physical Medicine and Rehabilitation DepartmentUniversity Hospital of MontpellierMontpellierFrance
  7. 7.Nuclear Medicine DepartmentUniversity Hospital of MontpellierMontpellierFrance

Personalised recommendations