Advertisement

Brain Imaging and Behavior

, Volume 8, Issue 2, pp 143–152 | Cite as

Influence of age, sex and genetic factors on the human brain

  • D. Reese McKay
  • Emma E. M. Knowles
  • Anderson A. M. Winkler
  • Emma Sprooten
  • Peter Kochunov
  • Rene L. Olvera
  • Joanne E. Curran
  • Jack W. KentJr.
  • Melanie A. Carless
  • Harald H. H. Göring
  • Thomas D. Dyer
  • Ravi Duggirala
  • Laura Almasy
  • Peter T. Fox
  • John Blangero
  • David C. Glahn
SI: Genetic Neuroimaging in Aging and Age-Related Diseases

Abstract

We report effects of age, age2, sex and additive genetic factors on variability in gray matter thickness, surface area and white matter integrity in 1,010 subjects from the Genetics of Brain Structure and Function Study. Age was more strongly associated with gray matter thickness and fractional anisotropy of water diffusion in white matter tracts, while sex was more strongly associated with gray matter surface area. Widespread heritability of neuroanatomic traits was observed, suggesting that brain structure is under strong genetic control. Furthermore, our findings indicate that neuroimaging-based measurements of cerebral variability are sensitive to genetic mediation. Fundamental studies of genetic influence on the brain will help inform gene discovery initiatives in both clinical and normative samples.

Keywords

Anatomical MRI Extended pedigrees Imaging genetics Heritability Demographic covariates Aging 

Notes

Acknowledgments

We are grateful to the participants in the San Antonio Family Study. Financial support for this study was provided by the National Institute of Mental Health grants MH078143, MH078111 and MH083824; and the National Institute for Heart, Lungs and Blood grant HL045222. The development of the analytical methods and SOLAR software used in this study was supported by National Institute of Mental Health grant R37 MH059490.

References

  1. Almasy, L., & Blangero, J. (1998). Multipoint quantitative-trait linkage analysis in general pedigrees. American Journal of Human Genetics, 62, 1198–1211.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bartzokis, G., Lu, P. H., Tingus, K., & Mendez, M. F. (2010). Lifespan trajectory of myelin integrity and maximum motor speed. Neurobiology of Aging, 31(9), 1554–1562.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system—a technical review. NMR in Biomedicine, 15, 435–455.PubMedCrossRefGoogle Scholar
  4. Blangero, J. (2004). Localization and identification of human quantitative trait loci: king harvest has surely come. Current Opinion in Genetics and Development, 14, 233–240.PubMedCrossRefGoogle Scholar
  5. Blangero, J., Williams, J. T., & Almasy, L. (2003). Novel family-based approaches to genetic risk in thrombosis. Journal of Thrombosis and Haemostasis, 1, 1391–1397.PubMedCrossRefGoogle Scholar
  6. Brun, C. C., Lepore, N., Luders, E., Chou, Y.-Y., Madsen, S. K., Toga, A. W., et al. (2009). Sex differences in brain structure in auditory and cingulate regions. Neuroreport, 20, 930–935.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chen, C. H., Gutierrez, E. D., Thompson, W., Panizzon, M. S., Jernigan, T. L., Eyler, L. T., et al. (2012). Hierarchical genetic organization of human cortical surface area. Science, 335, 1634–1636.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Dale, A. M., & Sereno, M. I. (1993). Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. Journal of Cognitive Neuroscience, 5, 162–176.PubMedCrossRefGoogle Scholar
  9. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9, 179–194.PubMedCrossRefGoogle Scholar
  10. Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31, 968–980.PubMedCrossRefGoogle Scholar
  11. Duggirala, R., Mitchell, B., Blangero, J., & Stern, M. (1999). Genetic determinants of variation in gallbladder disease in the Mexican-American population. Genetic Epidemiology, 16(2), 191–204.Google Scholar
  12. Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97, 11050–11055.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Fischl, B., Sereno, M. I., & Dale, A. M. (1999a). Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage, 9, 195–207.CrossRefGoogle Scholar
  14. Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999b). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8, 272–284.PubMedCrossRefGoogle Scholar
  15. Fischl, B., Liu, A., & Dale, A. M. (2001). Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging, 20, 70–80.PubMedCrossRefGoogle Scholar
  16. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.PubMedCrossRefGoogle Scholar
  17. Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Segonne, F., Quinn, B. T., et al. (2004a). Sequence-independent segmentation of magnetic resonance images. NeuroImage, 23(Suppl 1), S69–S84.PubMedCrossRefGoogle Scholar
  18. Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., et al. (2004b). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14, 11–22.PubMedCrossRefGoogle Scholar
  19. Glahn, D. C., Winkler, A. M., Kochunov, P., Almasy, L., Duggirala, R., Carless, M. A., et al. (2010). Genetic control over the resting brain. Proceedings of the National Academy of Sciences of the United States of America, 107(3), 1223–1228.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., et al. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. NeuroImage, 32, 180–194.PubMedCrossRefGoogle Scholar
  21. Hogstrom, L. J., Westlye, L. T., Walhovd, K. B., & Fjell, A. M. (2012). The structure of the cerebral cortex across adult. Life: Age-related patterns of surface area, thickness, and gyrification. cereb cortex. doi: 10.1093/cercor/bhs231.Google Scholar
  22. Jones, E. G., & Mendell, L. M. (1999). Science, 284(5415), 739.PubMedCrossRefGoogle Scholar
  23. Kochunov, P., Lancaster, J. L., Glahn, D. C., Purdy, D., Laird, A. R., Gao, F., et al. (2006). Retrospective motion correction protocol for high-resolution anatomical MRI. Human Brain Mapping, 27, 957–962.PubMedCrossRefGoogle Scholar
  24. Kochunov, P., Thompson, P. M., Coyle, T. R., Lancaster, J. L., Kochunov, V., Royall, D., et al. (2007). Relationship among neuroimaging indices of cerebral health during normal aging. Human Brain Mapping, 29, 36–45.CrossRefGoogle Scholar
  25. Kochunov, P., Glahn, D. C., Lancaster, J. L., Winkler, A. M., Smith, S., Thompson, P. M., et al. (2010). Genetics of microstructure of cerebral white matter using diffusion tensor imaging. NeuroImage, 53, 1109–1116.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Lander, E. S., International Human Genome Sequencing Consortium et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.PubMedCrossRefGoogle Scholar
  27. Mahaney, M., Blangero, J., Comuzzie, A., VandeBerg, J., Stern, M., & MacCluer, J. (1995). Plasma HDL cholesterol, triglycerides, and adiposity. A quantitative genetic test of the conjoint trait hypothesis in the San Antonio Family Heart Study. Circulation, 92(11), 3240–3248.Google Scholar
  28. McPeek, M. S., & Sun, L. (2000). Statistical tests for detection of misspecified relationships by use of genomescreen data. American Journal of Human Genetics, 66, 1076–109.Google Scholar
  29. Mitchell, B. D., Kammerer, C. M., Blangero, J., Mahaney, M. C., Rainwater, D. L., Dyke, B., et al. (1996). Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans. The San Antonio Family Heart Study. Circulation, 94(9), 2159–2170.Google Scholar
  30. Puppala, S., Dodd, G., Fowler, S., Arya, R., Schneider, J., Farook, V., et al. (2006). A genomewide search finds major susceptibility loci for gallbladder disease on chromosome 1 in Mexican Americans. American Journal of Human Genetics, 78(3), 377–392.Google Scholar
  31. Reuter, M., Schmansky, N. J., Rosas, H. D., & Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage, 61, 1402–1418.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Segonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn, H. K., et al. (2004). A hybrid approach to the skull stripping problem in MRI. NeuroImage, 22, 1060–1075.PubMedCrossRefGoogle Scholar
  33. Segonne, F., Pacheco, J., & Fischl, B. (2007). Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Transactions on Medical Imaging, 26, 518–529.PubMedCrossRefGoogle Scholar
  34. Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17, 87–97.PubMedCrossRefGoogle Scholar
  35. Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6, 309–315.PubMedCrossRefGoogle Scholar
  36. Sowell, E. R., Peterson, B. S., Kan, E., Woods, R. P., Yoshii, J., Bansal, R., et al. (2007). Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cerebral Cortex, 17, 1550–1560.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Stein, J. L., Hua, X., Lee, S., Ho, A. J., Leow, A. D., Toga, A. W., et al. (2010). Alzheimer’s disease neuroimaging initiative: voxelwise genome-wide association study (vGWAS). NeuroImage, 53(3), 1160–1174.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291(5507), 1304–1351.PubMedCrossRefGoogle Scholar
  39. Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T., et al. (2010). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. NeuroImage, 53, 1135–1146.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Winkler, A. M., Sabuncu, M. R., Yeo, B. T., Fischl, B., Greve, D. N., Kochunov, P., et al. (2012). Measuring and comparing brain cortical surface area and other areal quantities. NeuroImage, 61, 1428–1443.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • D. Reese McKay
    • 1
    • 2
    • 9
  • Emma E. M. Knowles
    • 1
    • 2
  • Anderson A. M. Winkler
    • 3
  • Emma Sprooten
    • 1
    • 2
  • Peter Kochunov
    • 4
  • Rene L. Olvera
    • 5
  • Joanne E. Curran
    • 6
  • Jack W. KentJr.
    • 6
  • Melanie A. Carless
    • 6
  • Harald H. H. Göring
    • 6
  • Thomas D. Dyer
    • 6
  • Ravi Duggirala
    • 6
  • Laura Almasy
    • 6
  • Peter T. Fox
    • 7
    • 8
  • John Blangero
    • 6
  • David C. Glahn
    • 1
    • 2
  1. 1.Department of PsychiatryYale University School of MedicineNew HavenUSA
  2. 2.Olin Neuropsychiatry Research CenterInstitute of Living, Hartford HospitalHartfordUSA
  3. 3.Centre for Functional MRI of the BrainUniversity of OxfordOxfordUK
  4. 4.Maryland Psychiatric Research Center, Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreUSA
  5. 5.Department of PsychiatryUniversity of Texas Health Science Center San AntonioSan AntonioUSA
  6. 6.Department of GeneticsTexas Biomedical Research InstituteSan AntonioUSA
  7. 7.Research Imaging InstituteUniversity of Texas Health Science Center San AntonioSan AntonioUSA
  8. 8.South Texas Veterans Health SystemSan AntonioUSA
  9. 9.Institute of LivingHartfordUSA

Personalised recommendations