Advertisement

Brain Imaging and Behavior

, Volume 8, Issue 2, pp 217–233 | Cite as

Neuroimaging and genetic risk for Alzheimer’s disease and addiction-related degenerative brain disorders

  • Florence F. Roussotte
  • Madelaine Daianu
  • Neda Jahanshad
  • Cassandra D. Leonardo
  • Paul M. ThompsonEmail author
SI: Genetic Neuroimaging in Aging and Age-Related Diseases

Abstract

Neuroimaging offers a powerful means to assess the trajectory of brain degeneration in a variety of disorders, including Alzheimer’s disease (AD). Here we describe how multi-modal imaging can be used to study the changing brain during the different stages of AD. We integrate findings from a range of studies using magnetic resonance imaging (MRI), positron emission tomography (PET), functional MRI (fMRI) and diffusion weighted imaging (DWI). Neuroimaging reveals how risk genes for degenerative disorders affect the brain, including several recently discovered genetic variants that may disrupt brain connectivity. We review some recent neuroimaging studies of genetic polymorphisms associated with increased risk for late-onset Alzheimer’s disease (LOAD). Some genetic variants that increase risk for drug addiction may overlap with those associated with degenerative brain disorders. These common associations offer new insight into mechanisms underlying neurodegeneration and addictive behaviors, and may offer new leads for treating them before severe and irreversible neurological symptoms appear.

Keywords

Alzheimer’s disease Imaging genetics Multi-modal imaging Neurodegeneration Addiction 

Notes

Acknowledgments

F.F.R. was supported, in part, by a postdoctoral fellowship from the A. P. Giannini Foundation. M.D. was supported, in part, by National Institute of Health Grant T32 GM008185. This work was additionally supported by National Institutes of Health grants (R01 MH097268, R01 AG040060) to P.M.T.

References

  1. Aguilar-Martinez, P., Bismuth, M., Picot, M. C., Thelcide, C., Pageaux, G. P., Blanc, F., et al. (2001). Variable phenotypic presentation of iron overload in H63D homozygotes: are genetic modifiers the cause? Gut, 48(6), 836–842.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Alzheimer’s Association Colorado. 2011 fact Sheet Alzheimer’s Disease. (2011). from www.alz.org/co/in_my_community_11039.asp
  3. Ando, K., Brion, J. P., Stygelbout, V., Suain, V., Authelet, M., Dedecker, R., et al. (2013). Clathrin adaptor CALM/PICALM is associated with neurofibrillary tangles and is cleaved in Alzheimer’s brains. Acta Neuropathologica, 125(6), 861–878.PubMedCrossRefGoogle Scholar
  4. Autry, A. E., & Monteggia, L. M. (2012). Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacological Reviews, 64(2), 238–258.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Babakchanian, S., Hwang, K. S., Coppola, G., Johnson, S., Thompson P. M., Lee, J. J., Cummings, J. L., Apostolova, L. G. (2011). TOMM40 rs2075650 and TOMM40 PolyT Polymorphism effects on ventricular enlargement in individuals with and without mild cognitive impairment, International Conference on Alzheimer’s Disease (ICAD) 2011, July 16–21, Paris, France.Google Scholar
  6. Barboriak, D. P., Doraiswamy, P. M., Krishnan, K. R., Vidyarthi, S., Sylvester, J., & Charles, H. C. (2000). Hippocampal sulcal cavities on MRI: relationship to age and apolipoprotein E genotype. Neurology, 54(11), 2150–2153.PubMedCrossRefGoogle Scholar
  7. Barrett, P. J., Song, Y., Van Horn, W. D., Hustedt, E. J., Schafer, J. M., Hadziselimovic, A., et al. (2012). The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science, 336(6085), 1168–1171.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Benitez, B. A., Cooper, B., Pastor, P., Jin, S. C., Lorenzo, E., Cervantes, S., et al. (2013). TREM2 is associated with the risk of Alzheimer’s disease in Spanish population. Neurobiology of Aging, 34(6), e15–e17.PubMedCrossRefGoogle Scholar
  9. Benzinger, T. L. S., Blazey, T., Jack, Jr., C. R., Koeppe, R. A., Su, Y., Raichle, M. E., Snyder, A. Z., Ances, B. M., Bateman, R. J., Cairns, N. J., Fagan, A. M., Goate, A., Marcus, D. S., Xiong, C., Aisen, P. S., Aldea, P., Christensen, J. J., Ercole, L., Hornbeck, R. C., Farrar, A. M., Jasielec, M. S., Owen, C. J., Xie, X., Mayeux, R. Brickman, A. M., McDade, E., Klunk, W. E., Mathis, C. A., Ringman, J. M., Thompson, P. M., Ghetti, B., Saykin, A. J., Sperling, R. A., Johnson, K. A., Salloway, S., Correia, S., Schofield, P. R., Masters, C. L., Rowe, C. C., Villemagne, V. L., Martins, R. N., Rossor, M. N., Fox, N. C., Cash, D. M., Weiner, M. W., Holtzman, D. M., Buckles, V. D., Moulder, K., Morris, J. C., for the Dominantly Inherited Alzheimer Network (2013). Regional variability of imaging biomarker changes in autosomal dominant Alzheimer’s Disease, submitted to PNAS, April 26 2013.Google Scholar
  10. Bergem, A. L., Engedal, K., & Kringlen, E. (1997). The role of heredity in late-onset Alzheimer disease and vascular dementia. A twin study. Archives of General Psychiatry, 54(3), 264–270.PubMedCrossRefGoogle Scholar
  11. Bertram, L., McQueen, M. B., Mullin, K., Blacker, D., & Tanzi, R. E. (2007). Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nature Genetics, 39(1), 17–23.PubMedCrossRefGoogle Scholar
  12. Braak, H., & Braak, E. (1995). Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiology of Aging, 16(3), 271–278. discussion 278–284.PubMedCrossRefGoogle Scholar
  13. Braak, H., & Braak, E. (1996). Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathologica, 92(2), 197–201.PubMedCrossRefGoogle Scholar
  14. Bralten, J., Franke, B., Arias-Vasquez, A., Heister, A., Brunner, H. G., Fernandez, G., et al. (2011). CR1 genotype is associated with entorhinal cortex volume in young healthy adults. Neurobiology of Aging, 32(11), e7–e11.PubMedCrossRefGoogle Scholar
  15. Braskie, M. N., Klunder, A. D., Hayashi, K. M., Protas, H., Kepe, V., Miller, K. J., et al. (2010). Plaque and tangle imaging and cognition in normal aging and Alzheimer’s disease. Neurobiology of Aging, 31(10), 1669–1678.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Braskie, M. N., Ringman, J. M., & Thompson, P. M. (2011a). Neuroimaging measures as endophenotypes in Alzheimer’s disease. International Journal of Alzheimer’s Disease, 2011, 490140.Google Scholar
  17. Braskie, M. N., Ringman, J. M., & Thompson, P. M. (2011b). Common Alzheimer’s disease risk variant within the CLU gene affects white matter microstructure in young adults. Journal of Neuroscience, 31(18), 6764–6770.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Braskie, M. N., Jahanshad, N., Stein, J. L., Barysheva, M., Johnson, K., McMahon, K. L., et al. (2012). Relationship of a variant in the NTRK1 gene to white matter microstructure in young adults. Journal of Neuroscience, 32(17), 5964–5972.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Brown, J. A., Terashima, K. H., Burggren, A. C., Ercoli, L. M., Miller, K. J., Small, G. W., et al. (2011). Brain network local interconnectivity loss in aging APOE-4 allele carriers. Proceedings of the National Academy of Sciences of the United States of America, 108, 20760–20765.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Bruner, E., & Jacobs, H. I. (2013). Alzheimer’s disease: the downside of a highly evolved parietal lobe? Journal of Alzheimer’s Disease, 35(2), 227–240.PubMedGoogle Scholar
  21. Buckner, R. L., Snyder, A. Z., Shannon, B. J., LaRossa, G., Sachs, R., Fotenos, A. F., et al. (2005). Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. Journal of Neuroscience, 25(34), 7709–7717.PubMedCrossRefGoogle Scholar
  22. Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., et al. (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. Journal of Neuroscience, 29(6), 1860–1873.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Cash, D. M., Ridgway, G. R., Ryan, N. S., Kinnunen, K. M., Yeatman, T., Malone, I., Benzinger, T. L. S., Koeppe, R., Jack, C. R., Raichle, M., Marcus, D., Ringman, J., Thompson, P. M., Saykin, A. J., Salloway, S., Correia, S., Johnson, K., Sperling, R., Schofield, P., Rowe, C., Brickman, A. M., Mayeux, R., Mathis, C., McDade, E., Klunk, W., Weiner, M., Bateman, R., Goate, A., Xiong, C., Buckles, V., Moulder, K., Morris, J. C., Rossor, M. N., Ourselin, S., Fox, N. C. (2013). The pattern of volumetric atrophy in familial Alzheimer’s disease: Results from the DIAN Study, submitted to Neurology, April 2013.Google Scholar
  24. Chapuis, J., Hannequin, D., Pasquier, F., Bentham, P., Brice, A., Leber, I., et al. (2008). Association study of the GAB2 gene with the risk of developing Alzheimer’s disease. Neurobiology of Disease, 30(1), 103–106.PubMedCrossRefGoogle Scholar
  25. Chiang, M. C., Barysheva, M., Toga, A. W., Medland, S. E., Hansell, N. K., James, M. R., et al. (2010). BDNF gene effects on brain circuitry and intelligence replicated in 455 Twins. NeuroImage, 55(2), 448–454.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Crist, R. C., Ambrose-Lanci, L. M., Vaswani, M., Clarke, T. K., Zeng, A., Yuan, C., et al. (2013). Case–control association analysis of polymorphisms in the delta-opioid receptor, OPRD1, with cocaine and opioid addicted populations. Drug and Alcohol Dependence, 127(1–3), 122–128.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Daianu, M., Jahanshad, N., Nir, T. M., Dennis, E., Toga, A. W., Jack, C. R. J., et al. (2012). Analyzing the structural k-core of brain connectivity networks in normal aging and Alzheimer’s Disease. Paper presented at the MICCAI NIBAD, Nice, France, 2012.Google Scholar
  28. Daianu, M., Jahanshad, N., Nir, T. M., Toga, A. W., Jack Jr, C. R., Weiner, M. W., et al. (2013). Breakdown of brain connectivity between normal aging and Alzheimer's Disease: a structural k-core network analysis. Brain Connectivity, 3(4), 407–422.Google Scholar
  29. Delbeuck, X., Van der Linden, M., & Collette, F. (2003). Alzheimer’s disease as a disconnection syndrome? Neuropsychology Review, 13(2), 79–92.PubMedCrossRefGoogle Scholar
  30. den Heijer, T., Oudkerk, M., Launer, L. J., van Duijn, C. M., Hofman, A., & Breteler, M. M. (2002). Hippocampal, amygdalar, and global brain atrophy in different apolipoprotein E genotypes. Neurology, 59(5), 746–748.CrossRefGoogle Scholar
  31. Douaud, G., Refsum, H., de Jager, C. A., Jacoby, R., Nichols, T. E., Smith, S. M., Smith, A. D. (2013). Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proceedings of the National Academy of Sciences of the United States of America, 110(23), 9523–9528.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Duyckaerts, C., & Dickson, D. W. (2003). Neurodegeneration: the molecular pathology of dementia and movement disorders (pp. 46–65). Basel: Neurpath Press.Google Scholar
  33. Ewers, M., Frisoni, G. B., Teipel, S. J., Grinberg, L. T., Amaro, E., Jr., Heinsen, H., et al. (2011). Staging Alzheimer’s disease progression with multimodality neuroimaging. Progress in Neurobiology, 95(4), 535–546.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Fan, Y., Resnick, S. M., Wu, X., & Davatzikos, C. (2008). Structural and functional biomarkers of prodromal Alzheimer’s disease: a high-dimensional pattern classification study. NeuroImage, 41(2), 277–285.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Farrer, L. A., Cupples, L. A., Haines, J. L., Hyman, B., Kukull, W. A., Mayeux, R., et al. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer disease meta analysis consortium. JAMA, 278(16), 1349–1356.PubMedCrossRefGoogle Scholar
  36. Fasulo, L., Ugolini, G., Visintin, M., Bradbury, A., Brancolini, C., Verzillo, V., et al. (2002). The neuronal microtubule-associated protein Tau is a substrate for caspase-3 and an effector of apoptosis. Journal of Neurochemistry, 75(2), 624–633.CrossRefGoogle Scholar
  37. Filippi, M., Agosta, F., Barkhof, F., Dubois, B., Fox, N. C., Frisoni, G. B., et al. (2012). EFNS task force: the use of neuroimaging in the diagnosis of dementia. European Journal of Neurology, 19(12), e131–e140. 1487–1501.PubMedCrossRefGoogle Scholar
  38. Filippini, N., Rao, A., Wetten, S., Gibson, R. A., Borrie, M., Guzman, D., et al. (2009). Anatomically-distinct genetic associations of APOE ɛ4 allele load with regional cortical atrophy in Alzheimer’s disease. NeuroImage, 44(3), 724–728.PubMedCrossRefGoogle Scholar
  39. Fjell, A. M., & Walhovd, K. B. (2011). Neuroimaging results impose new views on Alzheimer’s dIsease—the role of amyloid revised. Molecular Neurobiology, 45, 153–172.PubMedCrossRefGoogle Scholar
  40. Frisoni, G. B., Pievani, M., Testa, C., Sabattoli, F., Bresciani, L., Miniussi, M., et al. (2007). The topography of gray matter involvement in early and late-onset Alzheimer’s disease. Brain, 130, 720–730.PubMedCrossRefGoogle Scholar
  41. Furney, S. J., Simmons, A., Breen, G., Pedroso, I., Lunnon, K., Proitsi, P., et al. (2011). Genome-wide association with MRI atrophy measures as a quantitative trait locus for Alzheimer’s disease. Molecular Psychiatry, 16(11), 1130–1138.PubMedCrossRefGoogle Scholar
  42. Gatz, M., Pedersen, N. L., Berg, S., Johansson, B., Johansson, K., Mortimer, J. A., et al. (1997). Heritability for Alzheimer’s disease: the study of dementia in Swedish twins. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 52(2), M117–M125.CrossRefGoogle Scholar
  43. Gelfand, Y., & Kaplitt, M. G. (2012). Gene therapy for psychiatric disorders. World Neurosurgery. doi: 10.1016/j.wneu.2012.12.028.PubMedGoogle Scholar
  44. Geschwind, N. (1965). Disconnection syndrome in animals and man. Brain, 88, 237–294.Google Scholar
  45. Giambattistelli, F., Bucossi, S., Salustri, C., Panetta, V., Mariani, S., Siotto, M., et al. (2012). Effects of hemochromatosis and transferrin gene mutations on iron dyshomeostasis, liver dysfunction and on the risk of Alzheimer’s disease. Neurobiology of Aging, 33(8), 1633–1641.PubMedCrossRefGoogle Scholar
  46. Gili, T., Cercignani, M., Serra, L., Perri, R., Giove, F., Maraviglia, B., et al. (2011). Regional brain atrophy and functional disconnection across Alzheimer’s disease evolution. Journal of Neurology, Neurosurgery, and Psychiatry, 82(1), 58–66.PubMedCrossRefGoogle Scholar
  47. Glahn, D. C., Thompson, P. M., & Blangero, J. (2007). Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function. Human Brain Mapping, 28, 488–501.PubMedCrossRefGoogle Scholar
  48. Glahn, D. C., Curran, J. E., Winkler, A. M., Carless, M. A., Kent, J. W., Jr., Charlesworth, J. C., et al. (2012). High dimensional endophenotype ranking in the search for major depression risk genes. Biological Psychiatry, 71, 6–14.PubMedCentralPubMedCrossRefGoogle Scholar
  49. Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: etymology and strategic intentions. The American Journal of Psychiatry, 160(4), 636–645.PubMedCrossRefGoogle Scholar
  50. Guerreiro, R. J., & Hardy, J. (2012). TOMM40 association with Alzheimer disease: tales of APOE and linkage disequilibrium. Archives of Neurology, 69(10), 1243–1244.PubMedCrossRefGoogle Scholar
  51. Guerreiro, R., Wojtas, A., Bras, J., Carrasquillo, M., Rogaeva, E., Majounie, E., et al. (2013). TREM2 variants in Alzheimer’s disease. New England Journal of Medicine, 368(2), 117–127.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Guitart, X., Codony, X., & Monroy, X. (2004). Sigma receptors: biology and therapeutic potential. Psychopharmacology, 174(3), 301–319.PubMedCrossRefGoogle Scholar
  53. Hafez, D. M., Huang, J. Y., Richardson, J. C., Masliah, E., Peterson, D. A., & Marr, R. A. (2012). F-spondin gene transfer improves memory performance and reduces amyloid-beta levels in mice. Neuroscience, 223, 465–472.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Hagmann, P., Cammoun, L., Gigander, X., Meuli, R., Honey, C. J., Wedeen, V. J., et al. (2008). Mapping the structural core of the human cerebral cortex. PLoS Biology, 6(7), 1479–1493.CrossRefGoogle Scholar
  55. Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M. L., et al. (2009). Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nature Genetics, 41(10), 1088–1093.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Harris, S. E., Fox, H., Wright, A. F., Hayward, C., Starr, J. M., Whalley, L. J., et al. (2006). The brain-derived neurotrophic factor Val66Met polymorphism is associated with age-related change in reasoning skills. Molecular Psychiatry, 11(5), 505–513.PubMedCrossRefGoogle Scholar
  57. Hashimoto, T., Wakabayashi, T., Watanabe, A., Kowa, H., Hosoda, R., Nakamura, A., et al. (2002). CLAC: a novel Alzheimer amyloid plaque component derived from a transmembrane precursor, CLAC-P/collagen type XXV. EMBO Journal, 21(7), 1524–1534.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Heinzerling, K. G., & Shoptaw, S. (2012). Gender, brain-derived neurotrophic factor Val66Met, and frequency of methamphetamine use. Gender Medicine, 9(2), 112–120.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Hibar, D. P., Stein, J. L., Kohannim, O., Jahanshad, N., Saykin, A. J., Shen, L., et al. (2011). Voxelwise gene-wide association study (vGeneWAS): multivariate gene-based association testing in 731 elderly subjects. NeuroImage, 54(4), 1875–1891.CrossRefGoogle Scholar
  60. Hibar, D. P., Jahanshad, N., Stein, J. L., Kohannim, O., Toga, A. W., Medland, S. E., et al. (2012). Alzheimer’s disease risk gene, GAB2, is associated with regional brain volume differences in 755 young healthy twins. Twin Research and Human Genetics, 15(3), 286–295.PubMedCentralPubMedCrossRefGoogle Scholar
  61. Hinrichs, C., Singh, V., Xu, G., Johnson, S. C., & Alzheimer’s disease neuroimaging initiative. (2011). Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. NeuroImage, 55(2), 574–589.PubMedCentralPubMedCrossRefGoogle Scholar
  62. Ho, A., & Sudhof, T. C. (2004). Binding of F-spondin to amyloid-beta precursor protein: a candidate amyloid-beta precursor protein ligand that modulates amyloid-beta precursor protein cleavage. Proceedings of the National Academy of Sciences of the United States of America, 101(8), 2548–2553.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Hua, X., Leow, A. D., Parikshak, N., Lee, S., Chiang, M. C., Toga, A. W., et al. (2008). Tensor-based morphometry as a neuroimaging biomarker for Alzheimer’s disease: an MRI study of 676 AD, MCI, and normal subjects. NeuroImage, 43(3), 458–469.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Hua, Y., Zhao, H., Kong, Y., & Ye, M. (2011). Association between the MTHFR gene and Alzheimer’s disease: a meta-analysis. International Journal of Neuroscience, 121(8), 462–471.PubMedCrossRefGoogle Scholar
  65. Jack, C. R., Jr., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., et al. (2010a). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology, 9(1), 119–128.PubMedCentralPubMedCrossRefGoogle Scholar
  66. Jack, C. R., Jr., Bernstein, M. A., Borowski, B. J., Gunter, J. L., Fox, N. C., Thompson, P. M., et al. (2010b). Update on the magnetic resonance imaging core of the Alzheimer’s disease neuroimaging initiative. Alzheimers Dement, 6, 212–220.PubMedCentralPubMedCrossRefGoogle Scholar
  67. Jahanshad, N., Valcour, V. G., Nir, T. M., Kohannim, O., Busovaca, E., Nicolas, K., et al. (2012a). Disrupted brain networks in the aging HIV+ population. Brain Connect, 2, 335–344.PubMedCentralPubMedCrossRefGoogle Scholar
  68. Jahanshad, N., Kohannim, O., Hibar, D. P., Stein, J. L., McMahon, K. L., de Zubicaray, G. I., et al. (2012b). Brain structure in healthy adults is related to serum transferrin and the H63D polymorphism in the HFE gene. Proceedings of the National Academy of Sciences of the United States of America, 109(14), E851–E859.PubMedCentralPubMedCrossRefGoogle Scholar
  69. Jahanshad, N., Rajagopalan, P., Hua, X., Hibar, D. P., Nir, T. M., Toga, A. W., et al. (2013a). Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity. Proceedings of the National Academy of Sciences of the United States of America, 110(12), 4768–4773.PubMedCentralPubMedCrossRefGoogle Scholar
  70. Jahanshad, N., Rajagopalan, P., Thompson, P. M. (2013b). Neuroimaging, Nutrition, and Iron-Related Genes, Invited Review for Cellular Molecular and Life Science Reviews (CMLS Reviews), in press.Google Scholar
  71. Jin, C., Li, W., Yuan, J., Xu, W., & Cheng, Z. (2012). Association of the CR1 polymorphism with late-onset Alzheimer’s disease in Chinese Han populations: a meta-analysis. Neuroscience Letters, 527(1), 46–49.PubMedCrossRefGoogle Scholar
  72. Johnson, S. C., La Rue, A., Hermann, B. P., Xu, G., Koscik, R. L., Jonaitis, E. M., et al. (2011). The effect of TOMM40 poly-T length on gray matter volume and cognition in middle-aged persons with APOE epsilon3/epsilon3 genotype. Alzheimers Dement, 7(4), 456–465.PubMedCentralPubMedCrossRefGoogle Scholar
  73. Jones, B. (2013). Alzheimer disease: TREM2 linked to late-onset AD. Nature Reviews Neurology, 9(1), 5.PubMedCrossRefGoogle Scholar
  74. Jonsson, T., Stefansson, H., Steinberg, S., Jonsdottir, I., Jonsson, P. V., Snaedal, J., et al. (2013). Variant of TREM2 associated with the risk of Alzheimer’s disease. New England Journal of Medicine, 368(2), 107–116.PubMedCentralPubMedCrossRefGoogle Scholar
  75. Ke, Y., & Ming Qian, Z. (2003). Iron misregulation in the brain: a primary cause of neurodegenerative disorders. Lancet Neurology, 2(4), 246–253.PubMedCrossRefGoogle Scholar
  76. Kohannim, O., Jahanshad, N., Braskie, M. N., Stein, J. L., Chiang, M. C., Reese, A. H., et al. (2012). Predicting white matter integrity from common genetic variants. Neuropsychopharmacology. doi: 10.1038/npp.2012.49.PubMedCentralPubMedGoogle Scholar
  77. Lambert, J. C., Heath, S., Even, G., Campion, D., Sleegers, K., Hiltunen, M., et al. (2009). Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nature Genetics, 41(10), 1094–1099.PubMedCrossRefGoogle Scholar
  78. Lee, T. S., Goh, L., Chong, M. S., Chua, S. M., Chen, G. B., Feng, L., et al. (2012). Downregulation of TOMM40 expression in the blood of Alzheimer disease subjects compared with matched controls. Journal of Psychiatric Research, 46(6), 828–830.PubMedCrossRefGoogle Scholar
  79. Lehtovirta, M., Laakso, M. P., Soininen, H., Helisalmi, S., Mannermaa, A., Helkala, E. L., et al. (1995). Volumes of hippocampus, amygdala and frontal lobe in Alzheimer patients with different apolipoprotein E genotypes. Neuroscience, 67(1), 65–72.PubMedCrossRefGoogle Scholar
  80. Levran, O., Yuferov, V., & Kreek, M. J. (2012). The genetics of the opioid system and specific drug addictions. Human Genetics, 131(6), 823–842.PubMedCentralPubMedCrossRefGoogle Scholar
  81. Li, D., Zhao, H., Kranzler, H. R., Oslin, D., Anton, R. F., Farrer, L. A., et al. (2012). Association of COL25A1 with comorbid antisocial personality disorder and substance dependence. Biological Psychiatry, 71(8), 733–740.PubMedCentralPubMedCrossRefGoogle Scholar
  82. Lichtheim, L. (2006). On aphasia. Brain, 129(6), 1347–1350.CrossRefGoogle Scholar
  83. Lin, M., Zhao, L., Fan, J., Lian, X. G., Ye, J. X., Wu, L., et al. (2012). Association between HFE polymorphisms and susceptibility to Alzheimer’s disease: a meta-analysis of 22 studies including 4,365 cases and 8,652 controls. Molecular Biology Reports, 39(3), 3089–3095.PubMedCrossRefGoogle Scholar
  84. Mansoori, N., Tripathi, M., Luthra, K., Alam, R., Lakshmy, R., Sharma, S., et al. (2012). MTHFR (677 and 1298) and IL-6-174 G/C genes in pathogenesis of Alzheimer’s and vascular dementia and their epistatic interaction. Neurobiology of Aging, 33(5), e1–e8.PubMedCrossRefGoogle Scholar
  85. Marrazzo, A., Caraci, F., Salinaro, E. T., Su, T. P., Copani, A., & Ronsisvalle, G. (2005). Neuroprotective effects of sigma-1 receptor agonists against β-amyloid-induced toxicity. Neuroreport, 16(11), 1223–1226.PubMedCrossRefGoogle Scholar
  86. Mathis, C. A., Kuller, L. H., Klunk, W. E., Snitz, B. E., Price, J. C., Weissfeld, L. A., et al. (2012). In vivo assessment of amyloid-β deposition in nondemented very elderly subjects. Annals of Neurology. doi: 10.1002/ana.23797.Google Scholar
  87. Maurice, T., & Su, T. P. (2009). The pharmacology of sigma-1 receptors. Pharmacology and Therapeutics, 124(2), 195–206.PubMedCentralPubMedCrossRefGoogle Scholar
  88. Munoz, K. E., Hype, L. W., & Hariri, A. R. (2010). Imaging genetics. Journal of the American Academy of Child and Adolescent Psychiatry, 48(4), 356–361.Google Scholar
  89. Naj, A. C. (+over 100 authors) (2011). Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nature Genetics, 43, 436–441.Google Scholar
  90. Nakagawa, T., & Kaneko, S. (2013). SLC1 glutamate transporters and diseases: psychiatric diseases and pathological pain. Current Molecular Pharmacology, 6(2), 66–73.PubMedCrossRefGoogle Scholar
  91. Neumann, H., & Daly, M. J. (2013). Variant TREM2 as risk factor for Alzheimer’s disease. New England Journal of Medicine, 368(2), 182–184.PubMedCrossRefGoogle Scholar
  92. Nussbaum, R. L. (2013). Genome-wide association studies, Alzheimer disease, and understudied populations. JAMA, 309(14), 1527–1528.PubMedCrossRefGoogle Scholar
  93. O’Dwyer, L., Lamberton, F., Matura, S., Tanner, C., Scheibe, M., Miller, J., et al. (2012). Reduced hippocampal volume in healthy young ApoE4 carriers: an MRI study. PLoS One, 7(11), e48895. doi: 10.1371/journal.pone.0048895.PubMedCentralPubMedCrossRefGoogle Scholar
  94. Ortega-Roldan, J. L., Ossa, F., & Schnell, J. R. (2013). Characterization of the human sigma-1 receptor chaperone domain structure and Binding Immunoglobulin Protein (BiP) interactions. Journal of Biological Chemistry, 288(29), 21448–21457.PubMedCentralPubMedCrossRefGoogle Scholar
  95. Pradhan, A. A., Befort, K., Nozaki, C., Gaveriaux-Ruff, C., & Kieffer, B. L. (2011). The delta opioid receptor: an evolving target for the treatment of brain disorders. Trends in Pharmacological Sciences, 32(10), 581–590.PubMedCentralPubMedCrossRefGoogle Scholar
  96. Rajagopalan, P., Hua, X., Jack, C. R., Weiner, M. W., Toga, A. W., Thompson, P. M., et al. (2011). Homocysteine levels are associated with regional brain volumes in 732 elderly subjects. NeuroReport, 22(8), 391–395.PubMedCentralPubMedCrossRefGoogle Scholar
  97. Rajagopalan, P., Jahanshad, N., Stein, J. L., Hua, X., Madsen, S. K., Kohannim, O., et al. (2012a). Common folate gene variant, MTHFR C677T, is associated with brain structure in two independent cohorts of people with mild cognitive impairment. NeuroImage: Clinical, 1(1), 179–187.CrossRefGoogle Scholar
  98. Rajagopalan, P., Hua, X., Kohannim, O., Toga, A. W., Jack, Jr., C. R., Weiner, M. W., Thompson, P. M., and the Alzheimer’s Disease Neuroimaging Initiative (2012b). Mapping the interaction between APOE-epsilon4 and TOMM40 SNPs and Brain Atrophy: An N=705 ADNI study, Organization for Human Brain Mapping (OHBM) 2012, Beijing, China, June 10–14, 2012.Google Scholar
  99. Rajagopalan, P., Hibar, D. P., Thompson, P. M. (2013). TREM2 risk variant and loss of brain tissue. The New England Journal of Medicine, in press.Google Scholar
  100. Reiman, E. M., Webster, J. A., Myers, A. J., Hardy, J., Dunckley, T., Zismann, V. L., et al. (2007). GAB2 alleles modify Alzheimer’s risk in APOE epsilon4 carriers. Neuron, 54(5), 713–720.PubMedCentralPubMedCrossRefGoogle Scholar
  101. Rietveld, C. A. (+over 100 authors) (2013). GWAS of 126,559 Individuals Identifies Genetic Variants Associated with Educational Attainment. Science, doi:  10.1126/science.1235488
  102. Roses, A. D., Lutz, M. W., Amrine-Madsen, H., Saunders, A. M., Crenshaw, D. G., Sundseth, S. S., et al. (2010). A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. Pharmacogenomics Journal, 10(5), 375–384.PubMedCentralPubMedCrossRefGoogle Scholar
  103. Roussotte, F. F., Jahanshad, N., Hibar, D. P., Sowell, E. R., Kohannim, O., Barysheva, M., et al. (2013). A commonly carried genetic variant in the delta opioid receptor gene, OPRD1, is associated with smaller regional brain volumes: Replication in elderly and young populations. Human Brain Mapping. doi: 10.1002/hbm.22247.
  104. Sarajarvi, T., Tuusa, J. T., Haapasalo, A., Lackman, J. J., Sormunen, R., Helisalmi, S., et al. (2011). Cysteine 27 variant of the delta-opioid receptor affects amyloid precursor protein processing through altered endocytic trafficking. Molecular and Cellular Biology, 31(11), 2326–2340.PubMedCentralPubMedCrossRefGoogle Scholar
  105. Schmidt, R., Ropele, S., Pendl, B., Ofner, P., Enzinger, C., Schmidt, H., et al. (2008). Longitudinal multimodal imaging in mild to moderate Alzheimer’s disease: a pilot study with memantine. Journal of Neurology, Neurosurgery, and Psychiatry, 79(12), 1312–1317.PubMedCentralPubMedCrossRefGoogle Scholar
  106. Shen, L., Thompson, P. M., Potkin, S. G., Bertram, L., Farrer, L. A., Foroud, T. M., Green, R. C., Hu, X., Huentelman, M. J., Kim, S., Kauwe, J. S. K., Li, Q., Liu, E., Moore, J. H., Munsie, L., Nho, K., Ramanan, V. K., Stone, D. J., Swaminathan, S., Toga, A. W., Weiner, M. W., Saykin, A. J., for the Alzheimer’s Disease Neuroimaging Initiative (2013). Genetic analysis of quantitative phenotypes in AD and MCI: Imaging, Cognition and Biomarkers, to be submitted to Brain Imaging & Behavior, Special Issue on Imaging Genetics (ed. John D. van Horn), June 13 2013.Google Scholar
  107. Sherva, R., Tripodis, Y., Bennett, D. A., Chibnik, L. B., Crane, P. K., de Jager, P. L., et al. (2013). Genome-wide association study of the rate of cognitive decline in Alzheimer’s disease. Alzheimer’s Dement. doi: 10.1016/j.jalz.2013.01.008.Google Scholar
  108. Speliotes, E. K. (+over 100 authors) (2010). Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 42, 937–948.Google Scholar
  109. Sporns O. (2011). Neworks of the brain. Cambridge, MA, p. 5–31.Google Scholar
  110. Stein, J. L., Hua, X., Morra, J. H., Lee, S., Hibar, D. P., Ho, A. J., et al. (2010). Genome-wide analysis reveals novel genes influencing temporal lobe structure with relevance to neurodegeneration in Alzheimer’s disease. NeuroImage, 51(2), 542–554.PubMedCentralPubMedCrossRefGoogle Scholar
  111. Tanzi, R. E. (2012). The genetics of Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(10).Google Scholar
  112. Teng, L., Zhao, J., Wang, F., Ma, L., & Pei, G. (2010). A GPCR/secretase complex regulates beta- and gamma-secretase specificity for Abeta production and contributes to AD pathogenesis. Cell Research, 20(2), 138–153.PubMedCrossRefGoogle Scholar
  113. Teng, E., Kepe, V., Frautschy, S. A., Liu, J., Satyamurthy, N., Yang, F., et al. (2011). [F-18] FDDNP microPET imaging correlates with brain Aβ burden in a transgenic rat model of Alzheimer disease: effects of aging, in vivo blockade, and anti-Aβ antibody treatment. Neurobiology of Disease, 43(3), 565–575.PubMedCentralPubMedCrossRefGoogle Scholar
  114. Thambisetty, M., Beason-Held, L. L., An, Y., Kraut, M., Nalls, M., Hernandez, D. G., et al. (2013). Alzheimer risk variant CLU and brain function during aging. Biological Psychiatry, 73(5), 399–405.PubMedCentralPubMedCrossRefGoogle Scholar
  115. Thathiah, A., & De Strooper, B. (2011). The role of G protein-coupled receptors in the pathology of Alzheimer’s disease. Nature Review Neuroscience, 12(2), 73–87.CrossRefGoogle Scholar
  116. Thompson, P. M., & Jahanshad, N. (2012). Ironing out neurodegeneration: is iron intake important during the teenage years? Expert Review of Neurotherapeutics, 12(6), 629–631.PubMedCrossRefGoogle Scholar
  117. Thompson, P. M. (+over 150 authors) for the ENIGMA Consortium (2013b). The ENIGMA Consortium: Large-scale Collaborative Analyses of Neuroimaging and Genetic Data, to be submitted to Brain Imaging & Behavior, Special Issue on Imaging Genetics (ed. John D. van Horn), June 15 2013.Google Scholar
  118. Thompson, P. M., Hayashi, K. M., de Zubicaray, G., Janke, A. L., Rose, S. E., Semple, J., et al. (2003). Dynamics of gray matter loss in Alzheimer’s disease. Journal of Neuroscience, 23(3), 994–1005.PubMedGoogle Scholar
  119. Thompson, P. M., Hayashi, K. M., Simon, S., Geaga, J., Hong, M. S., Sui, Y., et al. (2004). Structural abnormalities in the brains of human subjects who use methamphetamine. Journal of Neuroscience, 24(26), 6028–6036.PubMedCrossRefGoogle Scholar
  120. Thompson, P. M., Glahn, D., Ge, T., Jahanshad, N., Nichols, T. E. (2013a). Genetics of the Connectome, Invited Review Paper for the Special Issue on the Connectome, NeuroImage, in press, May 8 2013.Google Scholar
  121. Toga, A. W., & Thompson, P. M. (2013). Connectomics sheds new light on Alzheimer’s disease. Biological Psychiatry, 73(5), 390–392.PubMedCentralPubMedCrossRefGoogle Scholar
  122. Tong, Y., Xu, Y., Scearce-Levie, K., Ptacek, L. J., & Fu, Y. H. (2010). COL25A1 triggers and promotes Alzheimer’s disease-like pathology in vivo. Neurogenetics, 11(1), 41–52.PubMedCentralPubMedCrossRefGoogle Scholar
  123. Van Cauwenberghe, C., Bettens, K., Engelborghs, S., Vandenbulcke, M., Van Dongen, J., Vermeulen, S., et al. (2013). Complement receptor 1 coding variant p.Ser1610Thr in Alzheimer’s disease and related endophenotypes. Neurobiol Aging.Google Scholar
  124. Vemuri, P., Wiste, H. J., Weigand, S. D., Shaw, L. M., Trojanowski, J. Q., Weiner, M. W., et al. (2009). MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology, 73(4), 294–301.PubMedCentralPubMedCrossRefGoogle Scholar
  125. Ventriglia, M., Bocchio Chiavetto, L., Benussi, L., Binetti, G., Zanetti, O., Riva, M. A., et al. (2002). Association between the BDNF 196 A/G polymorphism and sporadic Alzheimer’s disease. Molecular Psychiatry, 7(2), 136–137.PubMedCrossRefGoogle Scholar
  126. Voineskos, A. N., Lerch, J. P., Felsky, D., Shaikh, S., Rajji, T. K., Miranda, D., et al. (2011). The brain-derived neurotrophic factor Val66Met polymorphism and prediction of neural risk for Alzheimer disease. Archives of General Psychiatry, 68(2), 198–206.PubMedCrossRefGoogle Scholar
  127. Walhovd, K. B., Fjell, A. M., Brewer, J., McEvoy, L. K., Fennema-Notestine, C., Hagler, D. C., Jr., et al. (2010). Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. AJNR—American Journal of Neuroradiology, 31(2), 347–354.PubMedCentralPubMedCrossRefGoogle Scholar
  128. Wang, S. W., Wang, Y. J., Su, Y. J., Zhou, W. W., Yang, S. G., Zhang, R., et al. (2012a). Rutin inhibits beta-amyloid aggregation and cytotoxicity, attenuates oxidative stress, and decreases the production of nitric oxide and proinflammatory cytokines. Neurotoxicology, 33(3), 482–490.PubMedCrossRefGoogle Scholar
  129. Wang, H., Nie, F., Huang, H., Risacher, S. L., Saykin, A. J., Shen, L., et al. (2012b). Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning. Bioinformatics, 28(12), i127–i136.PubMedCentralPubMedCrossRefGoogle Scholar
  130. Wegrzyn, M., Teipel, S. J., Oltmann, I., Bauer, A., Thome, J., Grossmann, A., et al. (2012). Structural and functional cortical disconnection in Alzheimer’s disease: A combined study using diffusion tensor imaging and transcranial magnetic stimulation. Psychiatry Research, 212(3), 192–200.Google Scholar
  131. Wernicke, C. (1874/1977). Der aphasische symtomencomplex: Eine psychologische studie auf anatomicher basis. Breslau: Cohn und Weigert, 1874.Google Scholar
  132. Wishart, H. A., Saykin, A. J., McAllister, T. W., Rabin, L. A., McDonald, B. C., Flashman, L. A., et al. (2006). Regional brain atrophy in cognitively intact adults with a single APOE ε4 allele. Neurology, 67(7), 1221–1224.PubMedCrossRefGoogle Scholar
  133. Wolk, D. A., Price, J. C., Madeira, C., Saxton, J. A., Snitz, B. E., Lopez, O. L., et al. (2012). Amyloid imaging in dementias with atypical presentation. Alzheimers Dement, 8(5), 389–398.PubMedCentralPubMedCrossRefGoogle Scholar
  134. Wong, D. F., Rosenberg, P. B., Zhou, Y., Kumar, A., Raymont, V., Ravert, H. T., et al. (2010). In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18). Journal of Nuclear Medicine, 51(6), 913–920.PubMedCentralPubMedCrossRefGoogle Scholar
  135. Xiao, Q., Gil, S. C., Yan, P., Wang, Y., Han, S., Gonzales, E., et al. (2012). Role of phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) in intracellular amyloid precursor protein (APP) processing and amyloid plaque pathogenesis. Journal of Biological Chemistry, 287(25), 21279–21289.PubMedCentralPubMedCrossRefGoogle Scholar
  136. Zhang, H., Kranzler, H. R., Yang, B. Z., Luo, X., & Gelernter, J. (2008). The OPRD1 and OPRK1 loci in alcohol or drug dependence: OPRD1 variation modulates substance dependence risk. Molecular Psychiatry, 13(5), 531–543.PubMedCentralPubMedCrossRefGoogle Scholar
  137. Zhang, M. Y., Miao, L., Li, Y. S., & Hu, G. Y. (2010). Meta-analysis of the methylenetetrahydrofolate reductase C677T polymorphism and susceptibility to Alzheimer’s disease. Neuroscience Research, 68(2), 142–150.PubMedCrossRefGoogle Scholar
  138. Zhang, D., Shen, D., & Alzheimer’s The Alzheimer’s Disease Neuroimaging Initiative. (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage, 59(2), 895–907.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Florence F. Roussotte
    • 1
  • Madelaine Daianu
    • 1
  • Neda Jahanshad
    • 1
  • Cassandra D. Leonardo
    • 1
  • Paul M. Thompson
    • 1
    • 2
    Email author
  1. 1.Imaging Genetics Center, Laboratory of Neuro Imaging, Department of NeurologyDavid Geffen School of Medicine at UCLALos AngelesUSA
  2. 2.Department of Psychiatry and Biobehavioral Sciences, Semel InstituteDavid Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations