Brain Imaging and Behavior

, Volume 7, Issue 4, pp 388–408 | Cite as

Functional MRI studies in non-CNS cancers

  • Michiel B. de RuiterEmail author
  • Sanne B. Schagen
SI: Neuroimaging Studies of Cancer and Cancer Treatment


With increasing survival, cognitive problems after systemic treatment for non-CNS cancers are a growing concern. Functional magnetic resonance imaging (fMRI) is a noninvasive neuroimaging technique that has the potential to uncover the neural circuitry underlying cognitive problems after systemic treatment in cancer patients. Here, we provide an in depth review of the 14 fMRI studies that have been published to date on potential neurotoxic side effects of systemic treatment for non-CNS cancers. Cross-sectional studies in breast cancer survivors show a consistent pattern of hypoactivation in prefrontal and parietal brain regions during various executive functioning tasks 5 to 10 years after completion of adjuvant chemotherapy that are sometimes associated with worse cognitive performance compared to cancer-specific or no-cancer controls. These findings suggest reduced neural functioning as a result of chemotherapy in brain regions that support cognitive functioning. With regard to episodic memory, hypoactivation at encoding is followed by hyperactivation at retrieval, suggestive of impairments in memory encoding that are compensated by neural hyperactivation to perform adequate memory retrieval. Prospective studies of executive functioning and episodic memory show a more complex picture of hypo- and hyperactivation that is possibly due to various counteracting mechanisms relatively shortly after chemotherapy. Two small studies in prostate cancer patients, finally, provide preliminary evidence for reduced activation in task-relevant brain regions after androgen deprivation therapy, suggestive of reduction of neural function. Statistical correction for multiple comparisons in the reviewed studies is typically quite lenient. We suggest that future studies should preferably include larger sample sizes to allow proper statistical correction for multiple comparisons and include comprehensive neurocognitive tests and multimodal MRI to facilitate the interpretation of the observed fMRI findings.


Adjuvant chemotherapy Cancer fMRI Cognitive functioning Neuropsychology Review 


  1. Abraham, J., Haut, M. W., Moran, M. T., Filburn, S., Lemieux, S., & Kuwabara, H. (2008). Adjuvant chemotherapy for breast cancer: effects on cerebral white matter seen in diffusion tensor imaging. Clinical Breast Cancer, 8, 88–91.PubMedCrossRefGoogle Scholar
  2. Ahles, T. A., Saykin, A. J., McDonald, B. C., Li, Y., Furstenberg, C. T., Hanscom, B. S., et al. (2010). Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. Journal of Clinical Oncology, 28, 4434–4440.PubMedCrossRefGoogle Scholar
  3. Ahles, T. A., Root, J. C., & Ryan, E. L. (2012). Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. Journal of Clinical Oncology, 30, 3675–3686.PubMedCrossRefGoogle Scholar
  4. Barona, A., Reynolds, C. R., & Chastain, R. (1984). A demographically based index of premorbid intelligence for the Wais-R. Journal of Consulting and Clinical Psychology, 52, 885–887.CrossRefGoogle Scholar
  5. Beck, A. T., & Steer, R. A. (1990). BAI, Beck anxiety inventory. San Antonio: Psychological Corporation.Google Scholar
  6. Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck depression inventory II. San Antonio: Psychological Coorporation.Google Scholar
  7. Benedict, R. H., Schretlen, D., Groninger, L., & Brandt, J. (1998). Hopkins verbal learning test-revised: normative data and analysis of inter-form and test-retest reliability. The Clinical Neuropsychologist, 12, 43–55.CrossRefGoogle Scholar
  8. Bennett, C. M., & Miller, M. B. (2010). How reliable are the results from functional magnetic resonance imaging? Annals of the New York Academy of Sciences, 1191, 133–155.PubMedCrossRefGoogle Scholar
  9. Bracken, B. A., & Howell, K. (2004). Clinical assessment of depression: Professional manual. Odessa: Psychological Assessment Resources.Google Scholar
  10. Bruno, J., Hosseini, S. M., & Kesler, S. (2012). Altered resting state functional brain network topology in chemotherapy-treated breast cancer survivors. Neurobiology of Disease, 48, 329–338.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186–198.PubMedCrossRefGoogle Scholar
  12. Carp, J. (2012a). On the plurality of (methodological) worlds: estimating the analytic flexibility of FMRI experiments. Frontiers in Neuroscience, 6, 149.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Carp, J. (2012b). The secret lives of experiments: methods reporting in the fMRI literature. Neuroimage, 63, 289–300.PubMedCrossRefGoogle Scholar
  14. Cella, D. F., Tulsky, D. S., Gray, G., Sarafian, B., Linn, E., Bonomi, A., et al. (1993). The functional assessment of cancer therapy scale: development and validation of the general measure. Journal of Clinical Oncology, 11, 570–557.PubMedGoogle Scholar
  15. Chao, H. H., Uchio, E., Zhang, S., Hu, S., Bednarski, S. R., Luo, X., et al. (2012). Effects of androgen deprivation on brain function in prostate cancer patients - a prospective observational cohort analysis. BMC Cancer, 12, 371.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Cherrier, M. M., Aubin, S., & Higano, C. S. (2009). Cognitive and mood changes in men undergoing intermittent combined androgen blockade for non-metastatic prostate cancer. Psychooncology, 18, 237–247.PubMedCrossRefGoogle Scholar
  17. Cherrier, M. M., Borghesani, P. R., Shelton, A. L., & Higano, C. S. (2010). Changes in neuronal activation patterns in response to androgen deprivation therapy: a pilot study. BMC Cancer, 10, 1.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Cimprich, B., Reuter-Lorenz, P., Nelson, J., Clark, P. M., Therrien, B., Normolle, D., et al. (2010). Prechemotherapy alterations in brain function in women with breast cancer. Journal of Clinical and Experimental Neuropsychology, 32, 324–331.PubMedCrossRefGoogle Scholar
  19. Collins, B., Mackenzie, J., Tasca, G. A., Scherling, C., & Smith, A. (2013). Cognitive effects of chemotherapy in breast cancer patients: a dose–response study. Psychooncology, 22, 1517–1527.PubMedCrossRefGoogle Scholar
  20. Conroy, S. K., McDonald, B. C., Smith, D. J., Moser, L. R., West, J. D., Kamendulis, L. M., et al. (2013). Alterations in brain structure and function in breast cancer survivors: effect of post-chemotherapy interval and relation to oxidative DNA damage. Breast Cancer Research and Treatment, 137, 493–502.PubMedCrossRefGoogle Scholar
  21. de Ruiter, M. B., Reneman, L., Boogerd, W., Veltman, D. J., van Dam, F. S., Nederveen, A. J., et al. (2011). Cerebral hyporesponsiveness and cognitive impairment 10 years after chemotherapy for breast cancer. Human Brain Mapping, 32, 1206–1219.PubMedCrossRefGoogle Scholar
  22. de Ruiter, M. B., Oosterlaan, J., Veltman, D. J., van den Brink, W., & Goudriaan, A. E. (2012a). Similar hyporesponsiveness of the dorsomedial prefrontal cortex in problem gamblers and heavy smokers during an inhibitory control task. Drug and Alcohol Dependence, 121, 81–89.PubMedCrossRefGoogle Scholar
  23. de Ruiter, M. B., Reneman, L., Boogerd, W., Veltman, D. J., Caan, M., Douaud, G., et al. (2012b). Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: converging results from multimodal magnetic resonance imaging. Human Brain Mapping, 33, 2971–2983.PubMedCrossRefGoogle Scholar
  24. Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan Executive Function System (D-KEFS). San Antonio: The Psychological Corporation.Google Scholar
  25. Deprez, S., Amant, F., Yigit, R., Porke, K., Verhoeven, J., Van den Stock, J., et al. (2011). Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients. Human Brain Mapping, 32, 480–493.PubMedCrossRefGoogle Scholar
  26. Deprez, S., Amant, F., Smeets, A., Peeters, R., Leemans, A., Van Hecke, W., et al. (2012). Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. Journal of Clinical Oncology, 30(3), 274–281.PubMedCrossRefGoogle Scholar
  27. Eyler, L. T., Sherzai, A., Kaup, A. R., & Jeste, D. V. (2011). A review of functional brain imaging correlates of successful cognitive aging. Biological Psychiatry, 70, 115–122.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Ferguson, R. J., McDonald, B. C., Saykin, A. J., & Ahles, T. A. (2007). Brain structure and function differences in monozygotic twins: possible effects of breast cancer chemotherapy. Journal of Clinical Oncology, 25, 3866–3870.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Heaton, R. K., & Staff, P. A. R. (2004). Wisconsin Card Sorting Test Computer Version 4 Research Edition (WCST: CV4). Odessa: Psychological Assessment Resources, Inc.Google Scholar
  30. Hesbacher, P. T., Rickels, K., Morris, R. J., Newman, H., & Rosenfeld, H. (1980). Psychiatric illness in family practice. Journal of Clinical Psychiatry, 41, 6–10.PubMedGoogle Scholar
  31. Kesler, S. R., Bennett, F. C., Mahaffey, M. L., & Spiegel, D. (2009). Regional brain activation during verbal declarative memory in metastatic breast cancer. Clinical Cancer Research, 15, 6665–6673.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Kesler, S. R., Kent, J. S., & O'Hara, R. (2011). Prefrontal cortex and executive function impairments in primary breast cancer. Archives of Neurology, 68, 1447–1453.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Koppelmans, V., Groot, M. D., de Ruiter, M. B., Boogerd, W., Seynaeve, C., Vernooij, M. W., et al. (2012). Global and focal white matter integrity in breast cancer survivors 20 years after adjuvant chemotherapy. Human Brain Mapping epub ahead of print.Google Scholar
  34. Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular analysis in systems neuroscience: the dangers of double dipping. Nature Neuroscience, 12, 535–540.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Lopez Zunini, R. A., Scherling, C., Wallis, N., Collins, B., Mackenzie, J., Bielajew, C. et al. (2012). Differences in verbal memory retrieval in breast cancer chemotherapy patients compared to healthy controls: a prospective fMRI study. Brain Imaging and Behavior epub ahead of print.Google Scholar
  36. Lorr, M., McNAir, D. M., Heuchert, J. W. P., & Droppleman, L. F. (2003). Profile of Mood States (POMS). Toronto: Multi-Health Systems.Google Scholar
  37. McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2012). Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional magnetic resonance imaging study. Journal of Clinical Oncology, 30, 2500–2508.PubMedCrossRefGoogle Scholar
  38. Nelson, C. J., Lee, J. S., Gamboa, M. C., & Roth, A. J. (2008). Cognitive effects of hormone therapy in men with prostate cancer: a review. Cancer, 113, 1097–1106.PubMedCrossRefGoogle Scholar
  39. Petrides, M. (2005). Lateral prefrontal cortex: architectonic and functional organization. Philosophical Transactions of the Royal Society B: Biological Sciences., 360, 781–795.CrossRefGoogle Scholar
  40. Poldrack, R. A. (2007). Region of interest analysis for fMRI. Social, Cognitive and Affective Neuroscience, 2, 67–70.CrossRefGoogle Scholar
  41. Poldrack, R. A., Fletcher, P. C., Henson, R. N., Worsley, K. J., Brett, M., & Nichols, T. E. (2008). Guidelines for reporting an fMRI study. Neuroimage, 40, 409–414.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Radloff, L. S. (1977). The CES-D scale. A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385–401.CrossRefGoogle Scholar
  43. Reuter-Lorenz, P. A., & Cimprich, B. (2013). Cognitive function and breast cancer: promise and potential insights from functional brain imaging. Breast Cancer Research and Treatment, 137, 33–43.PubMedCrossRefGoogle Scholar
  44. Roth, R. M., Isquith, P. K., & Gioia, G. A. (2005). Behavioral Rating Inventory of Executive Function - Adult Version (BRIEF-A). Lutz: Psychological Assessment Resources.Google Scholar
  45. Schagen, S. B., van Dam, F. S., Muller, M. J., Boogerd, W., Lindeboom, J., & Bruning, P. F. (1999). Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma. Cancer, 85, 640–650.PubMedCrossRefGoogle Scholar
  46. Schagen, S. B., Muller, M. J., Boogerd, W., Mellenbergh, G. J., & van Dam, F. S. (2006). Change in cognitive function after chemotherapy: a prospective longitudinal study in breast cancer patients. Journal of the National Cancer Institute, 98, 1742–1745.PubMedCrossRefGoogle Scholar
  47. Scherling, C., Collins, B., Mackenzie, J., Bielajew, C., & Smith, A. (2011). Pre-chemotherapy differences in visuospatial working memory in breast cancer patients compared to controls: an FMRI study. Frontiers in Human Neuroscience, 5, 122.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Scherling, C., Collins, B., Mackenzie, J., Bielajew, C., & Smith, A. (2012). Prechemotherapy differences in response inhibition in breast cancer patients compared to controls: a functional magnetic resonance imaging study. Journal of Clinical and Experimental Neuropsychology, 34, 543–560.PubMedCrossRefGoogle Scholar
  49. Schmand, B., Lindeboom, J., & van Harskamp, F. (1992). De Nederlandse Leestest voor Volwassenen. Lisse: Swets & Zeitlinger.Google Scholar
  50. Schöning, S., Engelien, A., Kugel, H., Schafer, S., Schiffbauer, H., Zwitserlood, P., et al. (2007). Functional anatomy of visuo-spatial working memory during mental rotation is influenced by sex, menstrual cycle, and sex steroid hormones. Neuropsychologia, 45, 3203–3214.PubMedCrossRefGoogle Scholar
  51. Seidenberg, M., Haltiner, A., Taylor, M. A., Hermann, B. B., & Wyler, A. (1994). Development and validation of a Multiple Ability Self-Report Questionnaire. Journal of Clinical and Experimental Neuropsychology, 16, 93–104.PubMedCrossRefGoogle Scholar
  52. Silverman, D. H., Dy, C. J., Castellon, S. A., Lai, J., Pio, B. S., Abraham, L., et al. (2007). Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Research and Treatment, 103, 303–311.PubMedCrossRefGoogle Scholar
  53. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23, S208–S219.PubMedCrossRefGoogle Scholar
  54. Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., et al. (2011). Network modelling methods for FMRI. Neuroimage, 54(2), 875–891.PubMedCrossRefGoogle Scholar
  55. Spielberger, C. D., Gorsuch, R. L., & Lushene, R. E. (1970). Manual for the state-trait anxiety inventory. Palo Alto: Consulting Psychologists Press.Google Scholar
  56. Troyer, A. K., & Rich, J. B. (2002). Psychometric properties of a new metamemory questionnaire for older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 57, 19–27.CrossRefGoogle Scholar
  57. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15, 273–289.PubMedCrossRefGoogle Scholar
  58. Unverzagt, F. W., Monahan, P. O., Moser, L. R., Zhao, Q., Carpenter, J. S., Sledge, G. W., Jr., et al. (2007). The Indiana University telephone-based assessment of neuropsychological status: a new method for large scale neuropsychological assessment. Journal of the International Neuropsychological Society, 13, 799–806.PubMedCentralPubMedGoogle Scholar
  59. Von Ah, D., Harvison, K. W., Monahan, P. O., Moser, L. R., Zhao, Q., Carpenter, J. S., et al. (2009). Cognitive function in breast cancer survivors compared to healthy age- and education-matched women. Clinical Neuropsychology, 23, 661–674.CrossRefGoogle Scholar
  60. Wechsler, D. (2001). Wechsler Test of Adult Reading: WTAR. San Antonio: The Psychological Corporation.Google Scholar
  61. Wechsler, D. (2008). Wechsler adult intelligence scale (4th ed.). San Antonio: The Psychological Corporation.Google Scholar
  62. Wefel, J. S., & Schagen, S. B. (2012). Chemotherapy-related cognitive dysfunction. Current Neurology and Neuroscience Reports, 12, 267–275.PubMedCrossRefGoogle Scholar
  63. Wefel, J. S., Saleeba, A. K., Buzdar, A. U., & Meyers, C. A. (2010). Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer, 116, 3348–3356.PubMedCrossRefGoogle Scholar
  64. Wefel, J. S., Vardy, J., Ahles, T., & Schagen, S. B. (2011). International cognition and cancer task force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncology, 12, 703–708.PubMedCrossRefGoogle Scholar
  65. Weinberger, D. A., & Schwartz, G. E. (1990). Distress and restraint as superordinate dimensions of self−reported adjustment: A typological perspective. Journal of Personality, 58, 381–417.PubMedCrossRefGoogle Scholar
  66. White, T. (2003). Neuropsychological assessment battery. Lutz: Psychological Assessment Resources.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Psychosocial Research and EpidemiologyNetherlands Cancer InstituteAmsterdamThe Netherlands
  2. 2.Department of Radiology, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations