Brain Imaging and Behavior

, Volume 8, Issue 1, pp 39–51 | Cite as

Gender differences in creative thinking: behavioral and fMRI findings

  • Anna Abraham
  • Kristin Thybusch
  • Karoline Pieritz
  • Christiane Hermann
Original Research


Gender differences in creativity have been widely studied in behavioral investigations, but this topic has rarely been the focus of neuroscientific research. The current paper presents follow-up analyses of a previous fMRI study (Abraham et al., Neuropsychologia 50(8):1906–1917, 2012b), in which behavioral and brain function during creative conceptual expansion as well as general divergent thinking were explored. Here, we focus on gender differences within the same sample. Conceptual expansion was assessed with the alternate uses task relative to the object location task, whereas divergent thinking was assessed in terms of responses across both the alternate uses and object location tasks relative to n-back working memory tasks. While men and women were indistinguishable in terms of behavioral performance across all tasks, the pattern of brain activity while engaged in the tasks in question was indicative of strategy differences between the genders. Brain areas related to semantic cognition, rule learning and decision making were preferentially engaged in men during conceptual expansion, whereas women displayed higher activity in regions related to speech processing and social perception. During divergent thinking, declarative memory related regions were strongly activated in men, while regions involved in theory of mind and self-referential processing were more engaged in women. The implications of gender differences in adopted strategies or cognitive style when faced with generative tasks are discussed.


Sex differences Creative cognition Neuroimaging Semantic cognition Divergent thinking Cognitive style Cognitive strategy Conceptual expansion 



This research was funded by the German Research Foundation (DFG) within the research project AB390/1 which was awarded to AA. We thank the Bender Institute for Neuroimaging (BION) for their technical support in the data collection.


  1. Abraham, A. (2012). The neuroscience of creativity: A promising or perilous enterprise? In D. A. P. Alejandre & M. M.-L. Garrido (Eds.), Creativity and cognitive neuroscience (pp. 15–24). Madrid: Fundación Tomás Pascual y Pilar Gómez-Cuétara.Google Scholar
  2. Abraham, A. (2013). The promises and perils of the neuroscience of creativity. Frontiers in Human Neuroscience, 7(246), 1–9. doi: 10.3389/fnhum.2013.00246.
  3. Abraham, A., & von Cramon, D. Y. (2009). Reality = relevance? Insights from spontaneous modulations of the brain’s default network when telling apart reality from fiction. PloS One, 4(3), e4741. doi: 10.1371/journal.pone.0004741.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Abraham, A., & Windmann, S. (2007). Creative cognition: the diverse operations and the prospect of applying a cognitive neuroscience perspective. Methods (San Diego, California), 42(1), 38–48. doi: 10.1016/j.ymeth.2006.12.007.CrossRefGoogle Scholar
  5. Abraham, A., Schubotz, R. I., & von Cramon, D. Y. (2008a). Thinking about the future versus the past in personal and non-personal contexts. Brain Research, 1233, 106–119. doi: 10.1016/j.brainres.2008.07.084.PubMedCrossRefGoogle Scholar
  6. Abraham, A., Werning, M., Rakoczy, H., von Cramon, D. Y., & Schubotz, R. I. (2008b). Minds, persons, and space: an fMRI investigation into the relational complexity of higher-order intentionality. Consciousness and Cognition, 17(2), 438–450. doi: 10.1016/j.concog.2008.03.011.PubMedCrossRefGoogle Scholar
  7. Abraham, A., Kaufmann, C., Redlich, R., Hermann, A., Stark, R., Stevens, S., et al. (2012a). Self-referential and anxiety-relevant information processing in subclinical social anxiety: an fMRI study. Brain Imaging and Behavior. doi: 10.1007/s11682-012-9188-x.Google Scholar
  8. Abraham, A., Pieritz, K., Thybusch, K., Rutter, B., Kröger, S., Schweckendiek, J., et al. (2012b). Creativity and the brain: uncovering the neural signature of conceptual expansion. Neuropsychologia, 50(8), 1906–1917. doi: 10.1016/j.neuropsychologia.2012.04.015.PubMedCrossRefGoogle Scholar
  9. Albrecht, K., Volz, K. G., Sutter, M., Laibson, D. I., & von Cramon, D. Y. (2011). What is for me is not for you: brain correlates of intertemporal choice for self and other. Social Cognitive and Affective Neuroscience, 6(2), 218–225. doi: 10.1093/scan/nsq046.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Andreano, J. M., & Cahill, L. (2009). Sex influences on the neurobiology of learning and memory. Learning & Memory (Cold Spring Harbor, N.Y.), 16(4), 248–266. doi: 10.1101/lm.918309.CrossRefGoogle Scholar
  11. Baddeley, A. (2012). Working memory: theories, models, and controversies. Annual Review of Psychology, 63, 1–29. doi: 10.1146/annurev-psych-120710-100422.PubMedCrossRefGoogle Scholar
  12. Baer, J., & Kaufman, J. C. (2008). Gender differences in creativity. The Journal of Creative Behavior, 42(2), 75–105. doi: 10.1002/j.2162-6057.2008.tb01289.x.CrossRefGoogle Scholar
  13. Baker, F., Kennelly, J., & Tamplin, J. (2005). Themes within songs written by people with traumatic brain injury: gender differences. Journal of Music Therapy, 42(2), 111–122.PubMedCrossRefGoogle Scholar
  14. Baron-Cohen, S., Knickmeyer, R. C., & Belmonte, M. K. (2005). Sex differences in the brain: implications for explaining autism. Science, 310(5749), 819–823. doi: 10.1126/science.1115455.PubMedCrossRefGoogle Scholar
  15. Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15(11), 527–536. doi: 10.1016/j.tics.2011.10.001.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral cortex (New York, N.Y.: 1991), 19(12), 2767–2796. doi: 10.1093/cercor/bhp055.CrossRefGoogle Scholar
  17. Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11(2), 49–57. doi: 10.1016/j.tics.2006.11.004.PubMedCrossRefGoogle Scholar
  18. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. doi: 10.1196/annals.1440.011.PubMedCrossRefGoogle Scholar
  19. Bunge, S. A. (2004). How we use rules to select actions: a review of evidence from cognitive neuroscience. Cognitive, Affective, & Behavioral Neuroscience, 4(4), 564–579.CrossRefGoogle Scholar
  20. Cabeza, R., & St Jacques, P. (2007). Functional neuroimaging of autobiographical memory. Trends in Cognitive Sciences, 11(5), 219–227. doi: 10.1016/j.tics.2007.02.005.PubMedCrossRefGoogle Scholar
  21. Cahill, L. (2006). Why sex matters for neuroscience. Nature Reviews. Neuroscience, 7(6), 477–484. doi: 10.1038/nrn1909.PubMedCrossRefGoogle Scholar
  22. Cosgrove, K. P., Mazure, C. M., & Staley, J. K. (2007). Evolving knowledge of sex differences in brain structure, function, and chemistry. Biological Psychiatry, 62(8), 847–855. doi: 10.1016/j.biopsych.2007.03.001.PubMedCentralPubMedCrossRefGoogle Scholar
  23. De Frias, C. M., Nilsson, L.-G., & Herlitz, A. (2006). Sex differences in cognition are stable over a 10-year period in adulthood and old age. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 13(3–4), 574–587. doi: 10.1080/13825580600678418.PubMedCrossRefGoogle Scholar
  24. Eliot, L. (2011). The trouble with sex differences. Neuron, 72(6), 895–898. doi: 10.1016/j.neuron.2011.12.001.PubMedCrossRefGoogle Scholar
  25. Ernst, M., Maheu, F. S., Schroth, E., Hardin, J., Golan, L. G., Cameron, J., et al. (2007). Amygdala function in adolescents with congenital adrenal hyperplasia: a model for the study of early steroid abnormalities. Neuropsychologia, 45(9), 2104–2113. doi: 10.1016/j.neuropsychologia.2007.01.019.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Fine, C. (2010). From scanner to sound bite issues in interpreting and reporting sex differences in the brain. Current Directions in Psychological Science, 19(5), 280–283. doi: 10.1177/0963721410383248.CrossRefGoogle Scholar
  27. Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.B., Frith, C., & Frackowiak, R.S. (1995). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2, 189–210.Google Scholar
  28. Frith, C. D., & Frith, U. (2006). The neural basis of mentalizing. Neuron, 50(4), 531–534. doi: 10.1016/j.neuron.2006.05.001.PubMedCrossRefGoogle Scholar
  29. Giedd, J. N., Clasen, L. S., Lenroot, R., Greenstein, D., Wallace, G. L., Ordaz, S., et al. (2006). Puberty-related influences on brain development. Molecular and Cellular Endocrinology, 254–255, 154–162. doi: 10.1016/j.mce.2006.04.016.PubMedCrossRefGoogle Scholar
  30. Gong, G., He, Y., & Evans, A. C. (2011). Brain connectivity: gender makes a difference. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 17(5), 575–591. doi: 10.1177/1073858410386492.CrossRefGoogle Scholar
  31. Hein, G., & Knight, R. T. (2008). Superior temporal sulcus—it’s my area: or is it? Journal of Cognitive Neuroscience, 20(12), 2125–2136. doi: 10.1162/jocn.2008.20148.PubMedCrossRefGoogle Scholar
  32. Hugdahl, K., Thomsen, T., & Ersland, L. (2006). Sex differences in visuo-spatial processing: an fMRI study of mental rotation. Neuropsychologia, 44(9), 1575–1583. doi: 10.1016/j.neuropsychologia.2006.01.026.PubMedCrossRefGoogle Scholar
  33. Iijima, M., Arisaka, O., Minamoto, F., & Arai, Y. (2001). Sex differences in children’s free drawings: a study on girls with congenital adrenal hyperplasia. Hormones and Behavior, 40(2), 99–104. doi: 10.1006/hbeh.2001.1670.PubMedCrossRefGoogle Scholar
  34. Jordan, K., & Wüstenberg, T. (2010). The neural network of spatial cognition and its modulation by biological and environmental factors. Journal of Individual Differences, 31(2), 83–90. doi: 10.1027/1614-0001/a000015.CrossRefGoogle Scholar
  35. Jordan-Young, R. M. (2012). Hormones, context, and “Brain Gender”: a review of evidence from congenital adrenal hyperplasia. Social Science & Medicine, 74(11), 1738–1744. doi: 10.1016/j.socscimed.2011.08.026.CrossRefGoogle Scholar
  36. Klein, T. A., Neumann, J., Reuter, M., Hennig, J., von Cramon, D. Y., & Ullsperger, M. (2007). Genetically determined differences in learning from errors. Science (New York, N.Y.), 318(5856), 1642–1645. doi: 10.1126/science.1145044.CrossRefGoogle Scholar
  37. Kohn, N., Kellermann, T., Gur, R. C., Schneider, F., & Habel, U. (2011). Gender differences in the neural correlates of humor processing: implications for different processing modes. Neuropsychologia, 49(5), 888–897. doi: 10.1016/j.neuropsychologia.2011.02.010.PubMedCrossRefGoogle Scholar
  38. Kret, M. E., Pichon, S., Grèzes, J., & de Gelder, B. (2011). Men fear other men most: gender specific brain activations in perceiving threat from dynamic faces and bodies—an FMRI study. Frontiers in Psychology, 2, 3. doi: 10.3389/fpsyg.2011.00003.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Lin, W.-L., Hsu, K.-Y., Chen, H.-C., & Wang, J.-W. (2012). The relations of gender and personality traits on different creativities: a dual-process theory account. Psychology of Aesthetics, Creativity, and the Arts, 6(2), 112–123. doi: 10.1037/a0026241.CrossRefGoogle Scholar
  40. Lipp, I., Benedek, M., Fink, A., Koschutnig, K., Reishofer, G., Bergner, S., et al. (2012). Investigating neural efficiency in the visuo-spatial domain: an FMRI study. PloS One, 7(12), e51316. doi: 10.1371/journal.pone.0051316.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Lohmann, G., Muller, K., Bosch, V., Mentzel, H., Hessler, S., Chen, L., Zysset, S., & von Cramon, D. Y. (2001). LIPSIA - A new software system for the evaluation of functional magnetic resonance images of the human brain. Computerised Medical Imaging and Graphics, 25, 449–457.Google Scholar
  42. Luders, E., & Toga, A. W. (2010). Sex differences in brain anatomy. Progress in Brain Research, 186, 3–12. doi: 10.1016/B978-0-444-53630-3.00001-4.PubMedGoogle Scholar
  43. Marchewka, A., Jednorog, K., Falkiewicz, M., Szeszkowski, W., Grabowska, A., & Szatkowska, I. (2012). Sex, lies and fMRI–gender differences in neural basis of deception. PloS One, 7(8), e43076. doi: 10.1371/journal.pone.0043076.PubMedCentralPubMedCrossRefGoogle Scholar
  44. McCarthy, M. M., Arnold, A. P., Ball, G. F., Blaustein, J. D., & De Vries, G. J. (2012). Sex differences in the brain: the not so inconvenient truth. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(7), 2241–2247. doi: 10.1523/JNEUROSCI.5372-11.2012.CrossRefGoogle Scholar
  45. Moriguchi, Y., Touroutoglou, A., Dickerson, B. C., & Barrett, L. F. (2013). Sex differences in the neural correlates of affective experience. Social Cognitive and Affective Neuroscience. doi: 10.1093/scan/nst030.Google Scholar
  46. Neumann, J., & Lohmann, G. (2003). Bayesian second-level analysis of functional magnetic resonance images. NeuroImage, 20(2), 1346–1355. doi: 10.1016/S1053-8119(03)00443-9.
  47. Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain—a meta-analysis of imaging studies on the self. NeuroImage, 31(1), 440–457. doi: 10.1016/j.neuroimage.2005.12.002.PubMedCrossRefGoogle Scholar
  48. Pagnani, A. R. (2011). Gender differences. In Editors-in-Chief: M. A. Runco & S. R. Pritzker (Eds.), Encyclopedia of creativity (second edition) (pp. 551–557). San Diego: Academic Press. Retrieved from
  49. Price, C. J. (2010). The anatomy of language: a review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191, 62–88. doi: 10.1111/j.1749-6632.2010.05444.x.PubMedCrossRefGoogle Scholar
  50. Razumnikova, O. M. (2004). Gender differences in hemispheric organization during divergent thinking: an EEG investigation in human subjects. Neuroscience Letters, 362(3), 193–195. doi: 10.1016/j.neulet.2004.02.066.PubMedCrossRefGoogle Scholar
  51. Rudebeck, P. H., & Murray, E. A. (2011). Balkanizing the primate orbitofrontal cortex: distinct subregions for comparing and contrasting values. Annals of the New York Academy of Sciences, 1239, 1–13. doi: 10.1111/j.1749-6632.2011.06267.x.PubMedCrossRefGoogle Scholar
  52. Runco, M. A., Cramond, B., & Pagnani, A. R. (2010). Gender and creativity. In J. C. Chrisler & D. R. McCreary (Eds.), Handbook of gender research in psychology (pp. 343–357). New York: Springer. Retrieved from Scholar
  53. Saxe, R., Carey, S., & Kanwisher, N. (2004). Understanding other minds: linking developmental psychology and functional neuroimaging. Annual Review of Psychology, 55, 87–124. doi: 10.1146/annurev.psych.55.090902.142044.PubMedCrossRefGoogle Scholar
  54. Spiers, H. J., & Maguire, E. A. (2007). The neuroscience of remote spatial memory: a tale of two cities. Neuroscience, 149(1), 7–27. doi: 10.1016/j.neuroscience.2007.06.056.PubMedCrossRefGoogle Scholar
  55. Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489–510. doi: 10.1162/jocn.2008.21029.PubMedCrossRefGoogle Scholar
  56. Stevens, J. S., & Hamann, S. (2012). Sex differences in brain activation to emotional stimuli: a meta-analysis of neuroimaging studies. Neuropsychologia, 50(7), 1578–1593. doi: 10.1016/j.neuropsychologia.2012.03.011.PubMedCrossRefGoogle Scholar
  57. Svoboda, E., McKinnon, M. C., & Levine, B. (2006). The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia, 44(12), 2189–2208. doi: 10.1016/j.neuropsychologia.2006.05.023.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Tewes, U. (1994). HAWIE-R. Hamburg-Wechsler-Intelligenztest fur Erwachsene, Revision 1991; Handbuch und Testanweisung. Gottingen: Verlag Hans Huber.Google Scholar
  59. Thirion, B., Pinel, P., Mériaux, S., Roche, A., Dehaene, S., & Poline, J.-B. (2007). Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. NeuroImage, 35(1), 105–120. doi: 10.1016/j.neuroimage.2006.11.054.PubMedCrossRefGoogle Scholar
  60. Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9(9), 445–453. doi: 10.1016/j.tics.2005.07.001.PubMedCrossRefGoogle Scholar
  61. Wallach, M. A., & Kogan, N. (1965). Modes of thinking in young children: A study of the creativity-intelligence distinction. New York: Holt, Rinehart & Winston.Google Scholar
  62. Ward, T. B. (1994). Structured imagination: the role of category structure in exemplar generation. Cognitive Psychology, 27, 1–40.CrossRefGoogle Scholar
  63. Wolfensteller, U., & von Cramon, D. Y. (2010). Bending the rules: strategic behavioral differences are reflected in the brain. Journal of Cognitive Neuroscience, 22(2), 278–291. doi: 10.1162/jocn.2009.21245.PubMedCrossRefGoogle Scholar
  64. Wolfensteller, U., & von Cramon, D. Y. (2011). Strategy-effects in prefrontal cortex during learning of higher-order S-R rules. NeuroImage, 57(2), 598–607. doi: 10.1016/j.neuroimage.2011.04.048.PubMedCrossRefGoogle Scholar
  65. Worsley, K.J., & Friston, K.J. (1995). Analysis of fMRI time-series revisited — Again. Neuroimage, 2, 173–181.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Anna Abraham
    • 1
    • 2
  • Kristin Thybusch
    • 1
  • Karoline Pieritz
    • 1
  • Christiane Hermann
    • 1
  1. 1.Department of Clinical PsychologyJustus Liebig University GiessenGiessenGermany
  2. 2.Department of Community Medicine & Behavioral Sciences, Faculty of MedicineKuwait UniversityKuwaitKuwait

Personalised recommendations