Brain Imaging and Behavior

, Volume 7, Issue 4, pp 491–500 | Cite as

Chemotherapy-induced amenorrhea: a prospective study of brain activation changes and neurocognitive correlates

  • Susan K. Conroy
  • Brenna C. McDonald
  • Tim A. Ahles
  • John D. West
  • Andrew J. Saykin
SI: Neuroimaging Studies of Cancer and Cancer Treatment

Abstract

Chemotherapy-induced amenorrhea (CIA) often occurs in pre- and peri-menopausal BC patients, and while cancer/chemotherapy and abrupt estrogen loss have separately been shown to affect cognition and brain function, studies of the cognitive effects of CIA are equivocal, and its effects on brain function are unknown. Functional MRI (fMRI) during a working memory task was used to prospectively assess the pattern of brain activation and deactivation prior to and 1 month after chemotherapy in BC patients who experienced CIA (n = 9), post-menopausal BC patients undergoing chemotherapy (n = 9), and pre- and post-menopausal healthy controls (n = 6 each). Neurocognitive testing was also performed at both time points. Repeated measures general linear models were used to assess statistical significance, and age was a covariate in all analyses. We observed a group-by-time interaction in the combined magnitudes of brain activation and deactivation (p = 0.006): the CIA group increased in magnitude from baseline to post-treatment while other groups maintained similar levels over time. Further, the change in brain activity magnitude in CIA was strongly correlated with change in processing speed neurocognitive testing score (r = 0.837 p = 0.005), suggesting this increase in brain activity reflects effective cognitive compensation. Our results demonstrate prospectively that the pattern of change in brain activity from pre- to post-chemotherapy varies according to pre-treatment menopausal status. Cognitive correlates add to the potential clinical significance of these findings. These findings have implications for risk appraisal and development of prevention or treatment strategies for cognitive changes in CIA.

Keywords

Breast cancer Chemotherapy Amenorrhea Functional MRI 

References

  1. Ahles, T. A., & Saykin, A. J. (2007). Candidate mechanisms for chemotherapy-induced cognitive changes. Nature Reviews Cancer, 7(3), 192–201.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Ahles, T. A., Saykin, A. J., McDonald, B. C., Furstenberg, C. T., Cole, B., Hanscom, B. S., Mulrooney, T. J., Schwartz, G., & Kaufman, P. A. (2008). Cognitive function in breast cancer patients prior to adjuvant treatment. Breast Cancer Research and Treatment, 110, 143–152.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Ahles, T. A., Saykin, A. J., McDonald, B. C., Li, Y., Furstenberg, C. T., Hanscom, B. S., Mulrooney, T. J., Schwartz, G. N., & Kaufman, P. A. (2010). Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. Journal of Clinical Oncology, 28(29), 4434–4440.PubMedCrossRefGoogle Scholar
  4. Barona, A., Reynolds, C. R., & Chastain, R. (1984). A demographically based index of pre-morbid intelligence for the WAIS-R. Journal of Consulting and Clinical Psychology, 52(5), 885–887.Google Scholar
  5. Berman, K. F., Schmidt, P. J., Rubinow, D. R., Danaceau, M. A., Van Horn, J. D., Esposito, G., Ostrem, J. L., & Weinberger, D. R. (1997). Modulation of cognition-specific cortical activity by gonadal steroids: a positron-emission tomography study in women. Proceedings of the National Academy of Sciences of the United States of America, 94(16), 8836–8841.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Brett, M., Anton, J.-L., Valabregue, R., Poline, J.-B. (2002). Region of interest analysis using an SPM toolbox: presented at the 8th International Conference on Functional Mapping of the Human Brain, June 2–6, 2002, Sendai, Japan. NeuroImage, 16(2).Google Scholar
  7. Brinton, R. D. (2009). Estrogen-induced plasticity from cells to circuits: predictions for cognitive function. Trends in Pharmacological Sciences, 30(4), 212–222.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Brown, F. C., Roth, R. M., Saykin, A. J., & Beverly-Gibson, G. (2007). A new measure of visual location learning and memory: development and psychometric properties for the Brown Location Test (BLT). Clinical Neuropsychology, 21(5), 811–825.CrossRefGoogle Scholar
  9. Cimprich, B., Reuter-Lorenz, P., Nelson, J., Clark, P. M., Therrien, B., Normolle, D., Berman, M. G., Hayes, D. F., Noll, D. C., Peltier, S., & Welsh, R. C. (2010). Prechemotherapy alterations in brain function in women with breast cancer. Journal of Clinical and Experimental Neuropsychology, 32(3), 324–331.PubMedCrossRefGoogle Scholar
  10. Clement, F., & Belleville, S. (2010). Compensation and disease severity on the memory-related activations in mild cognitive impairment. Biological Psychiatry, 68(10), 894–902.PubMedCrossRefGoogle Scholar
  11. Craft, S., Newcomer, J., Kanne, S., Dagogo-Jack, S., Cryer, P., Sheline, Y., Luby, J., Dagogo-Jack, A., & Alderson, A. (1996). Memory improvement following induced hyperinsulinemia in Alzheimer’s disease. Neurobiology of Aging, 17(1), 123–130.PubMedCrossRefGoogle Scholar
  12. Craig, M. C., Fletcher, P. C., Daly, E. M., Rymer, J., Cutter, W. J., Brammer, M., Giampietro, V., Wickham, H., Maki, P. M., & Murphy, D. G. (2007). Gonadotropin hormone releasing hormone agonists alter prefrontal function during verbal encoding in young women. Psychoneuroendocrinology, 32(8–10), 1116–1127.PubMedCrossRefGoogle Scholar
  13. Craig, M. C., Fletcher, P. C., Daly, E. M., Picchioni, M. M., Brammer, M., Giampietro, V., Rymer, J., McGuire, P. K., Maki, P. M., & Murphy, D. G. (2008a). A study of visuospatial working memory pre- and post-Gonadotropin Hormone Releasing Hormone agonists (GnRHa) in young women. Hormones and Behavior, 54(1), 47–59.PubMedCrossRefGoogle Scholar
  14. Craig, M. C., Fletcher, P. C., Daly, E. M., Rymer, J., Brammer, M., Giampietro, V., Maki, P. M., Murphy, D. G., Craig, M. C., Fletcher, P. C., Daly, E. M., Rymer, J., Brammer, M., Giampietro, V., Maki, P. M., & Murphy, D. G. M. (2008b). Reversibility of the effects of acute ovarian hormone suppression on verbal memory and prefrontal function in pre-menopausal women. Psychoneuroendocrinology, 33(10), 1426–1431.PubMedCrossRefGoogle Scholar
  15. de Ruiter, M. B., Reneman, L., Boogerd, W., Veltman, D. J., van Dam, F. S., Nederveen, A. J., Boven, E., & Schagen, S. B. (2011). Cerebral hyporesponsiveness and cognitive impairment 10 years after chemotherapy for breast cancer. Human Brain Mapping, 32(8), 1206–1219.PubMedCrossRefGoogle Scholar
  16. Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (1987). The California verbal learning test. San Antonio: Psychological Corporation.Google Scholar
  17. Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (2000). Californial verbal learning test, 2nd ed. adult version manual. San Antonio: The Psychological Corporation.Google Scholar
  18. Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). The Delis-Kaplan executive function system. San Antonio: The Psychological Corporation.Google Scholar
  19. Doncarlos, L. L., Azcoitia, I., & Garcia-Segura, L. M. (2009). Neuroprotective actions of selective estrogen receptor modulators. Psychoneuroendocrinology, 34(Suppl 1), S113–S122.PubMedCrossRefGoogle Scholar
  20. Fischer, J. S., Jak, A. J., Kniker, J. E., Rudick, R. A. (2001). Administration and scoring manual for the Multiple Sclerosis Functional Composite Measure (MSFC). National Multiple Sclerosis Society.Google Scholar
  21. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Ganz, P. A., Land, S. R., Geyer, C. E., Cecchini, R. S., Costantino, J. P., Pajon, E. R., Fehrenbacher, L., Atkins, J. N., Polikoff, J. A., Vogel, V. G., Erban, J. K., Livingston, R. B., Perez, E. A., Mamounas, E. P., Wolmark, N., & Swain, S. M. (2011). Menstrual history and quality-of-life outcomes in women with node-positive breast cancer treated with adjuvant therapy on the NSABP B-30 trial. Journal of Clinical Oncology, 29(9), 1110–1116.PubMedCrossRefGoogle Scholar
  23. Henderson, V. W., & Brinton, R. D. (2010). Menopause and mitochondria: windows into estrogen effects on Alzheimer’s disease risk and therapy. Progress in Brain Research, 182, 77–96.PubMedGoogle Scholar
  24. Henderson, V. W., & Sherwin, B. B. (2007). Surgical versus natural menopause: cognitive issues. Menopause, 14(3 Pt 2), 572–579.PubMedCrossRefGoogle Scholar
  25. Hermelink, K., Untch, M., Lux, M. P., Kreienberg, R., Beck, T., Bauerfeind, I., & Munzel, K. (2007). Cognitive function during neoadjuvant chemotherapy for breast cancer: results of a prospective, multicenter, longitudinal study. Cancer, 109(9), 1905–1913.PubMedCrossRefGoogle Scholar
  26. Hermelink, K., Henschel, V., Untch, M., Bauerfeind, I., Lux, M. P., Munzel, K., Hermelink, K., Henschel, V., Untch, M., Bauerfeind, I., Lux, M. P., & Munzel, K. (2008). Short-term effects of treatment-induced hormonal changes on cognitive function in breast cancer patients: results of a multicenter, prospective, longitudinal study. Cancer, 113(9), 2431–2439.PubMedCrossRefGoogle Scholar
  27. Jansen, C. E., Miaskowski, C., Dodd, M., Dowling, G., Kramer, J., Jansen, C. E., Miaskowski, C., Dodd, M., Dowling, G., & Kramer, J. (2005). A metaanalysis of studies of the effects of cancer chemotherapy on various domains of cognitive function. Cancer, 104(10), 2222–2233.PubMedCrossRefGoogle Scholar
  28. Jenkins, V., Shilling, V., Deutsch, G., Bloomfield, D., Morris, R., Allan, S., Bishop, H., Hodson, N., Mitra, S., Sadler, G., Shah, E., Stein, R., Whitehead, S., & Winstanley, J. (2006). A 3-year prospective study of the effects of adjuvant treatments on cognition in women with early stage breast cancer. British Journal of Cancer, 94(6), 828–834.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Jim, H. S. L., Phillips, K. M., Chait, S., Faul, L. A., Popa, M. A., Lee, Y.-H., Hussin, M. G., Jacobsen, P. B., & Small, B. J. (2012). Meta-analysis of cognitive functioning in breast cancer survivors previously treated with standard-dose chemotherapy. Journal of Clinical Oncology, 30(29), 3578–3587.PubMedCrossRefGoogle Scholar
  30. Kesler, S. R., Kent, J. S., & O'Hara, R. (2011). Prefrontal cortex and executive function impairments in primary breast cancer. Archives of Neurology, 68(11), 1447–1453.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Lafayette Instrument. (1989). Grooved pegboard: Instruction/owner’s manual. Lafayette: Lafayette Instrument.Google Scholar
  32. McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2010). Gray matter reduction associated with systemic chemotherapy for breast cancer: a prospective MRI study. Breast Cancer Research and Treatment, 123(3), 819–828.PubMedCentralPubMedCrossRefGoogle Scholar
  33. McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., Saykin, A. J. (2012). Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional MRI study. Journal of Clincal Oncology, 30(20), 2500–2508.Google Scholar
  34. McKiernan, K. A., Kaufman, J. N., Kucera-Thompson, J., & Binder, J. R. (2003). A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. Journal of Cognitive Neuroscience, 15(3), 394–408.PubMedCrossRefGoogle Scholar
  35. Minisini, A. M., Menis, J., Valent, F., Andreetta, C., Alessi, B., Pascoletti, G., Piga, A., Fasola, G., & Puglisi, F. (2009). Determinants of recovery from amenorrhea in premenopausal breast cancer patients receiving adjuvant chemotherapy in the taxane era. Anti-Cancer Drugs, 20(6), 503–507.PubMedCrossRefGoogle Scholar
  36. Nagel, I. E., Preuschhof, C., Li, S. C., Nyberg, L., Backman, L., Lindenberger, U., & Heekeren, H. R. (2011). Load modulation of BOLD response and connectivity predicts working memory performance in younger and older adults. Journal of Cognitive Neuroscience, 23(8), 2030–2045.PubMedCrossRefGoogle Scholar
  37. O'Brien, J. L., O'Keefe, K. M., Laviolette, P. S., Deluca, A. N., Blacker, D., Dickerson, B. C., & Sperling, R. A. (2010). Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology, 74(24), 1969–1976.PubMedCrossRefGoogle Scholar
  38. Peper, J. S., van den Heuvel, M. P., Mandl, R. C. W., Pol, H. E. H., & van Honk, J. (2011). Sex steroids and connectivity in the human brain: a review of neuroimaging studies. Psychoneuroendocrinology, 36(8), 1101–1113.PubMedCrossRefGoogle Scholar
  39. Petrek, J. A., Naughton, M. J., Case, L. D., Paskett, E. D., Naftalis, E. Z., Singletary, S. E., & Sukumvanich, P. (2006). Incidence, time course, and determinants of menstrual bleeding after breast cancer treatment: a prospective study. Journal of Clinical Oncology, 24(7), 1045–1051.PubMedCrossRefGoogle Scholar
  40. Pullens, M. J., De Vries, J., & Roukema, J. A. (2010). Subjective cognitive dysfunction in breast cancer patients: a systematic review. Psycho-Oncology, 19(11), 1127–1138.PubMedCrossRefGoogle Scholar
  41. Radloff, L. S. (1977). The CES-D scale: a self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385–401.CrossRefGoogle Scholar
  42. Schagen, S. B., Muller, M. J., Boogerd, W., Mellenbergh, G. J., van Dam, F. S., Schagen, S. B., Muller, M. J., Boogerd, W., Mellenbergh, G. J., & van Dam, F. S. A. M. (2006). Change in cognitive function after chemotherapy: a prospective longitudinal study in breast cancer patients. Journal of the National Cancer Institute, 98(23), 1742–1745.PubMedCrossRefGoogle Scholar
  43. Spielberger, C. D. (1983). State-trait anxiety inventory. Palo Alto: Consulting Psychologists Press, Inc.Google Scholar
  44. Stearns, V., Schneider, B., Henry, N. L., Hayes, D. F., & Flockhart, D. A. (2006). Breast cancer treatment and ovarian failure: risk factors and emerging genetic determinants. Nature Reviews Cancer, 6(11), 886–893.PubMedCrossRefGoogle Scholar
  45. Sukumvanich, P., Case, L. D., Van Zee, K., Singletary, S. E., Paskett, E. D., Petrek, J. A., Naftalis, E., & Naughton, M. J. (2010). Incidence and time course of bleeding after long-term amenorrhea after breast cancer treatment: a prospective study. Cancer, 116(13), 3102–3111.PubMedCrossRefGoogle Scholar
  46. Swain, S. M., Land, S. R., Ritter, M. W., Costantino, J. P., Cecchini, R. S., Mamounas, E. P., Wolmark, N., & Ganz, P. A. (2009). Amenorrhea in premenopausal women on the doxorubicin-and-cyclophosphamide-followed-by-docetaxel arm of NSABP B-30 trial. Breast Cancer Research and Treatment, 113(2), 315–320.PubMedCrossRefGoogle Scholar
  47. Swain, S. M., Jeong, J. H., Geyer, C. E., Jr., Costantino, J. P., Pajon, E. R., Fehrenbacher, L., Atkins, J. N., Polikoff, J., Vogel, V. G., Erban, J. K., Rastogi, P., Livingston, R. B., Perez, E. A., Mamounas, E. P., Land, S. R., Ganz, P. A., & Wolmark, N. (2010). Longer therapy, iatrogenic amenorrhea, and survival in early breast cancer. The New England Journal of Medicine, 362(22), 2053–2065.PubMedCentralPubMedCrossRefGoogle Scholar
  48. The Psychological Corporation. (1997). WAIS-III/WMS-III updated technical manual. San Antonio, TX: The Psychological Corporation.Google Scholar
  49. The Psychological Corporation. (1999). Wechsler abbreviated scale of intelligence. San Antonio: The Psychological Corporation.Google Scholar
  50. Turgeon, J. L., Carr, M. C., Maki, P. M., Mendelsohn, M. E., & Wise, P. M. (2006). Complex actions of sex steroids in adipose tissue, the cardiovascular system, and brain: insights from basic science and clinical studies. Endocrine Reviews, 27(6), 575–605.PubMedCrossRefGoogle Scholar
  51. Vearncombe, K. J., & Pachana, N. A. (2009). Is cognitive functioning detrimentally affected after early, induced menopause? Menopause, 16(1), 188–198.PubMedCrossRefGoogle Scholar
  52. Vearncombe, K. J., Rolfe, M., Andrew, B., Pachana, N. A., Wright, M., & Beadle, G. (2011). Cognitive effects of chemotherapy-induced menopause in breast cancer. Clinical Neuropsychology, 25(8), 1295–1313.CrossRefGoogle Scholar
  53. Walshe, J. M., Denduluri, N., & Swain, S. M. (2006). Amenorrhea in premenopausal women after adjuvant chemotherapy for breast cancer. Journal of Clinical Oncology, 24(36), 5769–5779.PubMedCrossRefGoogle Scholar
  54. Warne, G. L., Fairley, K. F., Hobbs, J. B., & Martin, F. I. (1973). Cyclophosphamide-induced ovarian failure. The New England Journal of Medicine, 289(22), 1159–1162.PubMedCrossRefGoogle Scholar
  55. Wilkinson, G. S. (1993). The Wide Range Achievement Test (WRAT3): Administration manual. Wilmington: Wide Range, Inc.Google Scholar
  56. Zhao, L., O'Neill, K., & Diaz Brinton, R. (2005). Selective estrogen receptor modulators (SERMs) for the brain: current status and remaining challenges for developing NeuroSERMs. Brain Research. Brain Research Reviews, 49(3), 472–493.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Susan K. Conroy
    • 1
    • 2
  • Brenna C. McDonald
    • 1
    • 3
    • 4
  • Tim A. Ahles
    • 4
    • 5
  • John D. West
    • 1
  • Andrew J. Saykin
    • 1
    • 3
    • 4
  1. 1.Center for Neuroimaging, Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisUSA
  2. 2.Medical Scientist Training Program and Medical Neurosciences Graduate ProgramIndiana University School of MedicineIndianapolisUSA
  3. 3.Indiana University Melvin and Bren Simon Cancer CenterIndianapolisUSA
  4. 4.Department of Psychiatry and Norris Cotton Cancer CenterDartmouth Medical SchoolHanoverUSA
  5. 5.Department of Psychiatry and Behavioral SciencesMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations