Brain Imaging and Behavior

, Volume 7, Issue 3, pp 353–361 | Cite as

Posterior cortical atrophy and Alzheimer’s disease: a meta-analytic review of neuropsychological and brain morphometry studies

  • Jorge AlvesEmail author
  • José Miguel Soares
  • Adriana Sampaio
  • Óscar F. Gonçalves
Review Article


This paper presents the first systematic review and meta-analysis of neuropsychological and brain morphometry studies comparing posterior cortical atrophy (PCA) to typical Alzheimer’s disease (tAD). Literature searches were conducted for brain morphometry and neuropsychological studies including a PCA and a tAD group. Compared to healthy controls (HC), PCA patients exhibited significant decreases in temporal, occipital and parietal gray matter (GM) volumes, whereas tAD patients showed extensive left temporal atrophy. Compared to tAD patients, participants with PCA showed greater GM volume reduction in the right occipital gyrus extending to the posterior lobule. In addition, PCA patients showed less GM volume loss in the left parahippocampal gyrus and left hippocampus than tAD patients. PCA patients exhibit significantly greater impairment in Immediate Visuospatial Memory as well as Visuoperceptual and Visuospatial Abilities than patients with tAD. However, tAD patients showed greater impairment in Delayed Auditory/Verbal Memory than patients with PCA. PCA is characterized by significant atrophy of the occipital and parietal regions and severe impairments in visuospatial functioning.


Alzheimer’s disease (AD) Posterior cortical atrophy Magnetic resonance imaging (MRI) Voxel-based morphometry (VBM) Meta-analysis Effect Size Signed Differential Mapping (ES-SDM) 



JA is funded by a doctoral grant from the Foundation for Science and Technology, FCT (SFRH/BD/64457/2009, co-funded by FSE/POPH). JA and AS are funded by project PIC/IC/83290/2007, which is supported by FEDER (POFC—COMPETE) and FCT. JMS is supported by a fellowship of the project SwitchBox-FP7-HEALTH-2010-grant 259772-2. These organizations had no role in the study design, data collection, analysis, interpretation, or in the decision to submit the paper for publication.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11682_2013_9236_MOESM1_ESM.docx (254 kb)
ESM 1 (DOCX 254 kb)


  1. Amieva, H., Phillips, L. H., Della Sala, S., & Henry, J. D. (2004). Inhibitory functioning in Alzheimer’s disease. Brain, 127(5), 949–964. doi: 10.1093/brain/awh045.PubMedCrossRefGoogle Scholar
  2. Aresi, A., & Giovagnoli, A. R. (2009). The role of neuropsychology in distinguishing the posterior cortical atrophy syndrome and Alzheimer’s disease. Journal of Alzheimer’s Disease, 18(1), 65–70. doi: 10.3233/JAD-2009-1123.PubMedGoogle Scholar
  3. Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—the methods. Neuroimage, 11(6), 805–821. doi: 10.1006/nimg.2000.0582.PubMedCrossRefGoogle Scholar
  4. Backman, L., Jones, S., Berger, A. K., Laukka, E. J., & Small, B. J. (2004). Multiple cognitive deficits during the transition to Alzheimer’s disease. Journal of Internal Medicine, 256(3), 195–204. doi: 10.1111/j.1365-2796.2004.01386.x.PubMedCrossRefGoogle Scholar
  5. Benson, F., Davis, J., & Snyder, B. D. (1988). Posterior cortical atrophy. Archives of Neurology, 45, 789–793.PubMedCrossRefGoogle Scholar
  6. Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239–259.PubMedCrossRefGoogle Scholar
  7. Caprile, C., Bosch, B., Rami, L., Sanchez-Valle Diaz, R., Bartres-Faz, D., & Molinuevo, J. L. (2009). Posterior cortical atrophy. Its neuropsychological profile and differences from typical Alzheimer’s disease. Revista de Neurologia, 48(4), 178–182.PubMedGoogle Scholar
  8. Charles, R. F., & Hillis, A. E. (2005). Posterior cortical atrophy: clinical presentation and cognitive deficits compared to Alzheimer’s disease. Behavioural Neurology, 16(1), 15–23.PubMedGoogle Scholar
  9. Clare, L., Woods, R. T., Moniz Cook, E. D., Orrell, M., & Spector, A. (2003). Cognitive rehabilitation and cognitive training for early-stage Alzheimer’s disease and vascular dementia. Cochrane Database of Systematic Reviews (4), CD003260. doi: 10.1002/14651858.CD003260
  10. Croisile, B. (2004). Benson’s syndrome or Posterior Cortical Atrophy. Orphanet Encyclopedia. Accessed 30 September 2012.
  11. Croisile, B., Astier, J. L., Beaumont, C., & Mollion, H. (2010). Validation of the Rapid BAttery of Denomination (BARD) in 382 controls and 1004 patients of a memory clinic. Revue Neurologique (Paris), 166(6–7), 584–593. doi: 10.1016/j.neurol.2010.01.017.CrossRefGoogle Scholar
  12. Crutch, S. J., Lehmann, M., Schott, J. M., Rabinovici, G. D., Rossor, M. N., & Fox, N. C. (2012). Posterior cortical atrophy. Lancet Neurology, 11(2), 170–178. doi: 10.1016/S1474-4422(11)70289-7.PubMedCrossRefGoogle Scholar
  13. de Souza, L. C., Corlier, F., Habert, M. O., Uspenskaya, O., Maroy, R., Lamari, F., et al. (2011). Similar amyloid-beta burden in posterior cortical atrophy and Alzheimer’s disease. Brain, 134(7), 2036–2043. doi: 10.1093/brain/awr130.PubMedCrossRefGoogle Scholar
  14. DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7(3), 177–188. doi: 10.1016/0197-2456(86)90046-2.PubMedCrossRefGoogle Scholar
  15. Feldmann, A., Trauninger, A., Toth, L., Kotek, G., Kosztolanyi, P., Illes, E., et al. (2008). Atrophy and decreased activation of fronto-parietal attention areas contribute to higher visual dysfunction in posterior cortical atrophy. Psychiatry Research, 164(2), 178–184. doi: 10.1016/j.pscychresns.2008.01.006.PubMedCrossRefGoogle Scholar
  16. Formaglio, M., Costes, N., Seguin, J., Tholance, Y., Le Bars, D., Roullet-Solignac, I., et al. (2011). In vivo demonstration of amyloid burden in posterior cortical atrophy: a case series with PET and CSF findings. Journal of Neurology, 258(10), 1841–1851. doi: 10.1007/s00415-011-6030-0.PubMedCrossRefGoogle Scholar
  17. Galton, C. J., Patterson, K., Xuereb, J. H., & Hodges, J. R. (2000). Atypical and typical presentations of Alzheimer’s disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain, 123(3), 484–498.PubMedCrossRefGoogle Scholar
  18. Josephs, K. A., Whitwell, J. L., Boeve, B. F., Knopman, D. S., Tang-Wai, D. F., Drubach, D. A., et al. (2006). Visual hallucinations in posterior cortical atrophy. Archives of Neurology, 63(10), 1427–1432. doi: 10.1001/archneur.63.10.1427.PubMedCrossRefGoogle Scholar
  19. Kas, A., de Souza, L. C., Samri, D., Bartolomeo, P., Lacomblez, L., Kalafat, M., et al. (2011). Neural correlates of cognitive impairment in posterior cortical atrophy. Brain, 134(5), 1464–1478. doi: 10.1093/brain/awr055.PubMedCrossRefGoogle Scholar
  20. Lehmann, M., Crutch, S. J., Ridgway, G. R., Ridha, B. H., Barnes, J., Warrington, E. K., et al. (2011). Cortical thickness and voxel-based morphometry in posterior cortical atrophy and typical Alzheimer’s disease. Neurobiology of Aging, 32(8), 1466–1476. doi: 10.1016/j.neurobiolaging.2009.08.017.PubMedCrossRefGoogle Scholar
  21. Lehmann, M., Barnes, J., Ridgway, G. R., Ryan, N. S., Warrington, E. K., Crutch, S. J., et al. (2012). Global gray matter changes in posterior cortical atrophy: a serial imaging study. Alzheimer’s & Dementia, 8(6), 502–512. doi: 10.1016/j.jalz.2011.09.225.CrossRefGoogle Scholar
  22. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34(7), 939–944.PubMedCrossRefGoogle Scholar
  23. McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Jr., Kawas, C. H., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 263–269. doi: 10.1016/j.jalz.2011.03.005.CrossRefGoogle Scholar
  24. McMonagle, P., Deering, F., Berliner, Y., & Kertesz, A. (2006). The cognitive profile of posterior cortical atrophy. Neurology, 66(3), 331–338. doi: 10.1212/01.wnl.0000196477.78548.db.PubMedCrossRefGoogle Scholar
  25. Migliaccio, R., Agosta, F., Rascovsky, K., Karydas, A., Bonasera, S., Rabinovici, G. D., et al. (2009). Clinical syndromes associated with posterior atrophy: early age at onset AD spectrum. Neurology, 73(19), 1571–1578. doi: 10.1212/WNL.0b013e3181c0d427.PubMedCrossRefGoogle Scholar
  26. Migliaccio, R., Agosta, F., Possin, K. L., Rabinovici, G. D., Miller, B. L., & Gorno-Tempini, M. L. (2012a). White matter atrophy in Alzheimer’s disease variants. Alzheimer’s & Dementia, 8(5 Suppl), S78–S87. doi: 10.1016/j.jalz.2012.04.010. e71–72.CrossRefGoogle Scholar
  27. Migliaccio, R., Agosta, F., Toba, M. N., Samri, D., Corlier, F., de Souza, L. C., et al. (2012b). Brain networks in posterior cortical atrophy: a single case tractography study and literature review. Cortex, 48(10), 1298–1309. doi: 10.1016/j.cortex.2011.10.002.PubMedCrossRefGoogle Scholar
  28. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine, 6(7), e1000097. doi: 10.1371/journal.pmed.1000097.PubMedCrossRefGoogle Scholar
  29. Nestor, P. J., Caine, D., Fryer, T. D., Clarke, J., & Hodges, J. R. (2003). The topography of metabolic deficits in posterior cortical atrophy (the visual variant of Alzheimer’s disease) with FDG-PET. Journal of Neurology, Neurosurgery & Psychiatry, 74(11), 1521–1529. doi: 10.1136/jnnp.74.11.1521.CrossRefGoogle Scholar
  30. Radua, J., & Mataix-Cols, D. (2012). Meta-analytic methods for neuroimaging data explained. Biology of Mood & Anxiety Disorders, 2(1), 6. doi: 10.1186/2045-5380-2-6.CrossRefGoogle Scholar
  31. Radua, J., Mataix-Cols, D., Phillips, M. L., El-Hage, W., Kronhaus, D. M., Cardoner, N., et al. (2012). A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. Eur Psychiatry, 27(8), 605–611. doi: 10.1016/j.eurpsy.2011.04.001.PubMedCrossRefGoogle Scholar
  32. Scahill, R. I., Schott, J. M., Stevens, J. M., Rossor, M. N., & Fox, N. C. (2002). Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4703–4707. doi: 10.1073/pnas.052587399.PubMedCrossRefGoogle Scholar
  33. Shankar, G. M., & Walsh, D. M. (2009). Alzheimer’s disease: synaptic dysfunction and Abeta. Molecular Neurodegeneration, 4, 48. doi: 10.1186/1750-1326-4-48.PubMedCrossRefGoogle Scholar
  34. Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., et al. (1991). Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Annals of Neurology, 30(4), 572–580. doi: 10.1002/ana.410300410.PubMedCrossRefGoogle Scholar
  35. Victoroff, J., Ross, G. W., Benson, D. F., Verity, M. A., & Vinters, H. V. (1994). Posterior cortical atrophy. Neuropathologic correlations. Archives of Neurology, 51(3), 269–274.PubMedCrossRefGoogle Scholar
  36. Wallace, B. C., Schmid, C. H., Lau, J., & Trikalinos, T. A. (2009). Meta-Analyst: software for meta-analysis of binary, continuous and diagnostic data. BMC Medical Research Methodology, 9, 80. doi: 10.1186/1471-2288-9-80.PubMedCrossRefGoogle Scholar
  37. Westman, E., Cavallin, L., Muehlboeck, J. S., Zhang, Y., Mecocci, P., Vellas, B., et al. (2011). Sensitivity and specificity of medial temporal lobe visual ratings and multivariate regional MRI classification in Alzheimer’s disease. PLoS One, 6(7), e22506. doi: 10.1371/journal.pone.0022506.PubMedCrossRefGoogle Scholar
  38. Whitwell, J. L., Jack, C. R., Jr., Kantarci, K., Weigand, S. D., Boeve, B. F., Knopman, D. S., et al. (2007). Imaging correlates of posterior cortical atrophy. Neurobiology of Aging, 28(7), 1051–1061. doi: 10.1016/j.neurobiolaging.2006.05.026.PubMedCrossRefGoogle Scholar
  39. Yamasaki, T., Muranaka, H., Kaseda, Y., Mimori, Y., & Tobimatsu, S. (2012). Understanding the pathophysiology of Alzheimer’s disease and mild cognitive impairment: a mini review on fMRI and ERP studies. Neurology Research International, 2012, 719056. doi: 10.1155/2012/719056.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jorge Alves
    • 1
    • 4
    Email author
  • José Miguel Soares
    • 2
    • 3
  • Adriana Sampaio
    • 1
  • Óscar F. Gonçalves
    • 1
  1. 1.Neuropsychophysiology Lab, CIPsi, School of PsychologyUniversity of MinhoBragaPortugal
  2. 2.Life and Health Sciences Research Institute (ICVS), School of Health SciencesUniversity of MinhoBragaPortugal
  3. 3.ICVS/3B’s - PT Government Associate LaboratoryBraga/GuimarãesPortugal
  4. 4.Laboratório de Neuropsicofisiologia, Escola de PsicologiaUniversidade do MinhoBragaPortugal

Personalised recommendations