Brain Imaging and Behavior

, Volume 7, Issue 4, pp 478–490 | Cite as

A prospective evaluation of changes in brain structure and cognitive functions in adult stem cell transplant recipients

  • D. D. Correa
  • J. C. Root
  • R. Baser
  • D. Moore
  • K. K. Peck
  • E. Lis
  • T. B. Shore
  • H. T. Thaler
  • A. Jakubowski
  • N. Relkin
SI: Neuroimaging Studies of Cancer and Cancer Treatment

Abstract

Hematopoietic stem cell transplantation (HSCT) is an efficacious treatment for many hematologic malignancies. However, the conditioning regimen of high-dose (HD) chemotherapy with or without total body irradiation (TBI) can be associated with neurotoxicity. In this prospective study, we used quantitative neuroimaging techniques to examine regional gray matter and ventricular volumes, and standardized neuropsychological tests to assess cognitive function before and 1 year after HSCT in 28 patients with hematologic malignancies and in ten healthy controls evaluated at similar intervals. Nineteen patients received conditioning treatment with HD chemotherapy alone and nine had both TBI and HD chemotherapy. There was a significant reduction in gray matter volume in the middle frontal gyrus bilaterally and in the left caudate nucleus in the patient group (all patients combined) but not among healthy controls over the 1-year follow-up period. There was a significant increase in left lateral ventricle volume and in total ventricle volume in the patient group, relative to healthy controls. Similar brain structural changes were seen for patients treated with HD chemotherapy alone. The neuropsychological results showed that 21 % of patients could be classified as impaired at baseline. The Reliable Change Index suggested no significantly different rates of cognitive decline between patients and healthy controls. The findings suggest that HSCT patients may be at an increased risk for developing regional brain volume loss, and that subgroups may experience cognitive dysfunction prior to and 1 year following the transplant.

Keywords

Hematopoietic stem cell transplantation Cognitive Structural neuroimaging Voxel-based morphometry 

References

  1. Accomazzi, V., Lazarowich, R., Barlow, C.J., & Davey, B. (2005). Inventors; Cedara Software Corp., assignee. Image region segmentation system and method. US Patent Application 20050031202.Google Scholar
  2. Ahles, T. A., & Saykin, A. J. (2007). Candidate mechanisms for chemotherapy-induced cognitive changes. Nature Reviews. Cancer, 7, 192–201.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Ahles, T. A., Tope, D. M., Furstenberg, C., Hahn, D., & Mills, L. (1996). Psychologic and neuropsychologic impact of autologous bone marrow transplantation. Journal of Clinical Oncology, 14, 1457–1462.PubMedGoogle Scholar
  4. Ahles, T. A., Saykin, A. J., Noll, W. W., Furstenburg, C. T., Guerin, S., Cole, B., et al. (2003). The relationship of APOE genotype to neuropsychological performance in long-term cancer survivors treated with standard dose chemotherapy. Psycho-Oncology, 12, 612–619.PubMedCrossRefGoogle Scholar
  5. Ahles, T. A., Saykin, A. J., McDonald, B. C., et al. (2008). Cognitive function in breast cancer patients prior to adjuvant treatment. Breast Cancer Research and Treatment, 110, 143–152.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Ahles, T., Saykin, A., McDonald, B., Li, Y., Furstenberg, C. T., Hanscom, B. S., et al. (2010). Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: Impact of Age and Cognitive Reserve. Journal of Clinical Oncology, 28, 4434–4440.PubMedCrossRefGoogle Scholar
  7. Ahles, T. A., Root, J. C., & Ryan, E. L. (2012). Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. Journal of Clinical Oncology, 30, 3675–3686.PubMedCrossRefGoogle Scholar
  8. Andrykowski, M. A., Schmitt, F. A., Gregg, M. E., Brady, M. J., Lamb, D. G., & Henslee-Downey, P. J. (1992). Neuropsychologic impairment in adult bone marrow transplant candidates. Cancer, 70, 2288–2297.PubMedCrossRefGoogle Scholar
  9. Bartynski, W. S., Zeigler, Z., Spearman, M. P., Lin, L., Shadduck, R. K., & Lister, J. (2001). Etiology of cortical and white matter lesions in cyclosporin-A and FK-506 neurotoxicity. American Journal of Neuroradiology, 22, 1901–1914.PubMedGoogle Scholar
  10. Booth-Jones, M., Jacobsen, P. B., Ransom, S., & Soety, E. (2005). Characteristics and correlates of cognitive functioning following bone marrow transplantation. Bone Marrow Transplantation, 36, 695–702.PubMedCrossRefGoogle Scholar
  11. Chang, G., Meadows, M. E., Orav, E. J., & Antin, J. H. (2009). Mental status changes after hematopoietic stem cell transplantation. Cancer, 115, 4625–4635.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Correa, D. D., Maron, L., Harder, H., Klein, M., Armstrong, C. L., Calabrese, P., et al. (2007). Cognitive functions in primary central nervous system lymphoma: literature review and assessment guidelines. Annals of Oncology, 18, 1145–1151.PubMedCrossRefGoogle Scholar
  13. Correa, D. D., Shi, W., Thaler, H. T., Cheung, A. M., DeAngelis, L. M., & Abrey, L. E. (2008). Longitudinal cognitive follow-up in low grade gliomas. Journal of Neurooncology, 86, 321–327.CrossRefGoogle Scholar
  14. Correa, D. D., Shi, W., Abrey, L. E., Deangelis, L. M., Omuro, A. M., Deutsch, M. B., et al. (2012). Cognitive functions in primary CNS lymphoma after single or combined modality regimens. Neuro-Oncology, 14, 101–108.PubMedCentralPubMedCrossRefGoogle Scholar
  15. DeAngelis, L. M., & Posner, J. B. (2009). Side effects of radiation therapy. In L. M. DeAngelis & J. B. Posner (Eds.), Neurologic Complications of Cancer (2nd ed., pp. 511–555). New York: Oxford University Press.Google Scholar
  16. Deprez, S., Amant, F., Yigit, R., Porke, K., Verhoeven, J., Van den Stock, J., et al. (2011). Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired functioning in breast cancer patients. Human Brain Mapping, 32, 480–493.PubMedCrossRefGoogle Scholar
  17. Deprez, S., Amant, F., Smeets, A., Peeters, R., Leemans, A., Van Hecke, W., et al. (2012). Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. Journal of Clinical Oncology, 30, 274–281.PubMedCrossRefGoogle Scholar
  18. Devine, S. M., Carter, S., Soiffer, R. J., Pasquini, M. C., Hari, P. N., Stein, A., et al. (2011). Low risk of chronic graft-versus-host disease and relapse associated with T cell-depleted peripheral blood stem cell transplantation for acute myelogenous leukemia in first remission: results of the blood and marrow transplant clinical trials network protocol 0303. Biology of Blood and Marrow Transplantation, 9, 1343–1351.CrossRefGoogle Scholar
  19. Dietrich, J., Han, R., Yang, Y., et al. (2006). CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and vivo. Journal of Biology, 5, 1–23.CrossRefGoogle Scholar
  20. Dietrich, J., Monje, M., Wefel, J., & Meyers, C. (2008). Clinical patterns and biological correlates of cognitive dysfunction associated with cancer therapy. The Oncologist, 13, 1285–1295.PubMedCrossRefGoogle Scholar
  21. Ferguson, R. J., McDonald, B. C., Saykin, A. J., & Ahles, T. A. (2007). Brain structure and function differences in monozygotic twins: possible effects of breats cancer chemotherapy. Journal of Clinical Oncology, 25, 3866–3870.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.PubMedCrossRefGoogle Scholar
  23. Friedman, M. A., Fernandez, M., Wefel, J. S., Myszka, K. A., Champlin, R. E., & Meyers, C. A. (2009). Course of cognitive decline in hematopoietic stem cell transplantation: a within-subjects design. Archives of Clinical Neuropsychology, 24, 689–698.PubMedCrossRefGoogle Scholar
  24. Garrick, R. (2000). Neurologic Complications. In K. Atkinson (Ed.), Clinical bone marrow and blood stem cell transplantation. Cambridge: Cambridge University Press.Google Scholar
  25. Hagemeister, F. B. (2002). Treatment of relapsed aggressive lymphomas: regimens with and without high-dose therapy and stem rescue. Cancer Chemotherapy and Pharmacology, 49, 13–20.CrossRefGoogle Scholar
  26. Hamadani, M., Craig, M., Phillips, G. S., Abraham, J., Tse, W., Cumpston, A., et al. (2011). Higher busulfan dose intensity does not improve outcomes of patients undergoing allogeneic haematopoietic cell transplantation following fludarabine, busulfan-based reduced toxicity conditioning. Hematological Oncology, 4, 202–210.CrossRefGoogle Scholar
  27. Harder, H., van Gool, A. R., Cornelissen, J. J., Duivenvoorden, H. J., Eijkenboom, W. M., & van den Bent, M. J. (2005). Assessment of pre-treatment cognitive performance in adult bone marrow or hematopoietic stem cell transplantation patients: a comparative study. European Journal of Cancer, 41, 1007–1016.PubMedCrossRefGoogle Scholar
  28. Harder, H., Duivenvoorden, H. J., van Gool, A. R., Cornelissen, J. J., & van den Bent, M. J. (2006). Neurocognitive functions and quality of life in haematological patients receiving hematopoietic stem cell grafts: a one-year follow-up pilot study. Journal of Clinical and Experimental Neuropsychology, 28, 283–293.PubMedCrossRefGoogle Scholar
  29. Harder, H., van Gool, A. R., Duivenvoorden, H. J., Cornelissen, J. J., Eijkenboom, W. M., Barge, R. M., et al. (2007). Case-referent comparison of cognitive functions in patients receiving hematopoietic stem cell transplantation for haematological malignancies: two-year follow-up results. European Journal of Cancer, 43, 2052–2059.PubMedCrossRefGoogle Scholar
  30. Inagaki, M., Yoshikawa, E., Matsuoka, Y., Sugawara, Y., Nakano, T., Akechi, T., et al. (2007). Smaller regional volumes of brain gray and white matter demonstrated in breast cancer survivors exposed to adjuvant chemotherapy. Cancer, 109, 146–156.PubMedCrossRefGoogle Scholar
  31. Jacobs, S. R., Small, B. J., Booth-Jones, M., Jacobsen, P. B., & Fields, K. K. (2007). Changes in cognitive functioning in the year after hematopoietic stem cell transplantation. Cancer, 110, 1560–1567.PubMedCrossRefGoogle Scholar
  32. Jacobsen, P. B., Garland, L. L., Booth-Jones, M., Donovan, K. A., Thors, C. L., Winters, E., et al. (2004). Relationship of hemoglobin levels to fatigue and cognitive functioning among cancer patients receiving chemotherapy. Journal of Pain and Symptom Management, 28, 7–18.PubMedCrossRefGoogle Scholar
  33. Jacobson, N. S., & Truax, P. (1991). Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59, 12–19.PubMedCrossRefGoogle Scholar
  34. Jakubowski, A. A., Small, T. N., Young, J. W., Kernan, N. A., Castro-Malaspina, H., Hsu, K. C., et al. (2007). T cell depleted stem-cell transplantation for adults with hematologic malignancies: sustained engraftment of HLA-matched related donor grafts without the use of antithymocyte globulin. Blood, 110, 4552–4559.PubMedCrossRefGoogle Scholar
  35. Jim, H. S. L., Small, B., Hartman, S., Franzen, J., Millay, S., Phillips, K., et al. (2012). Clinical predictors of cognitive function in adults treated with hematopoietic cell transplantation. Cancer, 118, 3407–3416.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Keime-Guibert, F., Napolitano, M., & Delattre, J. Y. (1998). Neurological complications of radiotherapy and chemotherapy. Journal of Neurology, 245, 695–708.PubMedCrossRefGoogle Scholar
  37. Koppelmans, V., de Ruiter, M. B., van der Lijn, F., Boogerd, W., Seynaeve, C., van der Lugt, A., et al. (2012). Global and focal brain volume in long-term breast cancer survivors exposed to adjuvant chemotherapy. Breast Cancer Research and Treatment, 132, 1099–1106.PubMedCrossRefGoogle Scholar
  38. McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2010). Gray matter reduction associated with systemic chemotherapy for breast cancer: a prospective MRI study. Breast Cancer Research and Treatment, 123, 819–828.PubMedCentralPubMedCrossRefGoogle Scholar
  39. McDonald, B.C., Conroy, S.K., Smith, D.J., West, J.D., & Saykin, A.J. (2012a). Frontal gray matter reduction after breast cancer chemotherapy and association with executive symptoms: a replication and extension study. Brain Behavior and Immunity, 10.1016/i.bbi.2012.05.007
  40. McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2012b). Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional magnetic resonance imaging study. Journal of Clinical Oncology, 30, 2500–2508.Google Scholar
  41. Meyers, C. A. (1994). Neuropsychological aspects of cancer and cancer treatment. Physical Medicine and Rehabilitation: State of the Art Reviews, 8, 229–241.Google Scholar
  42. Meyers, C. A. (2008). How chemotherapy damages the central nervous system. Journal of Biology, 7, 11.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Meyers, C. A., Albitar, M., & Estey, E. (2004). Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer, 104, 788–793.CrossRefGoogle Scholar
  44. Mounier, N., Canals, C., Gisselbrecht, C., Cornelissen, J., Foa, R., Conde, E., et al. (2012). High-dose therapy and autologous stem cell transplantation in first relapse for diffuse large B cell lymphoma in the rituximab era: an analysis based on data from the European Blood and Marrow Transplantation Registry. Biology of Blood and Marrow Transplantation, 18, 788–793.PubMedCrossRefGoogle Scholar
  45. Nestor, S. M., Rupsingh, R., Borrie, M., Smith, M., Accomazzi, V., Wells, J. L., et al. (2008). Ventricular enlargement as a possible measure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database. Brain, 31, 2443–2454.CrossRefGoogle Scholar
  46. Nucci, M., Andrade, F., Vigorito, A., Trabasso, P., Aranha, J. F., Maiolino, A., et al. (2003). Infectious complications in patients randomized to receive bone marrow or peripheral blood transplantation. Transplant Infectious Disease, 5, 167–173.PubMedCrossRefGoogle Scholar
  47. Omuro, A. M., Ben-Porat, L. S., Panageas, K. S., Kim, A. K., Correa, D. D., Yahalom, J., et al. (2005). Delayed neurotoxicity in primary central nervous system lymphoma. Archives of Neurology, 62, 1595–1600.PubMedCrossRefGoogle Scholar
  48. Padovan, C. S., Yousry, T. A., Schleuning, M., Holler, E., Kolb, H.-J., & Straube, A. (1998). Neurological and neuroradiological findings in long-term survivors of allogeneic bone marrow transplantation. Annals of Neurology, 43, 627–633.PubMedCrossRefGoogle Scholar
  49. Peper, M., Steinvorth, S., Schraube, P., Fruehauf, S., Haas, R., Kimmig, B. N., et al. (2000). Neurobehavioral toxicity of total body irradiation: a follow-up in long-term survivors. International Journal of Radiation Oncology, Biology, Physics, 46, 303–311.PubMedCrossRefGoogle Scholar
  50. Rzeski, W., Pruskil, S., Macke, A., Felderhoff-Mueser, U., Reiher, A. K., Hoerster, F., et al. (2004). Anticancer agents are potent neurotoxins in vitro and in vivo. Annals of Neurology, 56, 351–360.PubMedCrossRefGoogle Scholar
  51. Schulz-Kindermann, F., Mehert, A., Scherwath, A., Schirmer, L., Schleimer, B., Zander, A. R., et al. (2007). Cognitive function in the acute course of allogeneic hematopoietic stem cell transplantation for hematological malignancies. Bone Marrow Transplantation, 39, 789–799.PubMedCrossRefGoogle Scholar
  52. Seigers, R., Fradell, J.E. (2011). Neurobiological basis of chemotherapy-induced cognitive impairment: a review of rodent research. Neurosci Biobehav Rev, 35, 729–741.Google Scholar
  53. Small, B. J., Rawson, K. S., Walsk, E., Jim, H. S., Hughes, T. F., Iser, L., et al. (2011). Catechol-o-methyltransferase genotype modulates cancer treatment-related cognitive deficits in breats cancer survivors. Cancer, 117, 1369–1376.PubMedCrossRefGoogle Scholar
  54. Snider, S., Bashir, R., & Bierman, P. (1994). Neurologic complications after high-dose chemotherapy and autologous bone marrow transplantation for Hodgkin’s disease. Neurology, 44, 681–684.PubMedCrossRefGoogle Scholar
  55. Sostak, P., Padovan, C. S., Yousry, T. A., Ledderose, G., Kolg, H.-J., & Straube, A. (2003). Prospective evaluation of neurological complications after allogeneic bone marrow transplantation. Neurology, 60, 842–848.PubMedCrossRefGoogle Scholar
  56. Soutar, R. L., & King, D. J. (1995). Bone marrow transplantation. British Medical Journal, 310, 31–36.PubMedCrossRefGoogle Scholar
  57. Stemmer, S. M., Stears, J. C., Burton, B. S., Jones, R. B., & Simon, J. H. (1994). White matter changes in patients with breast cancer treated with high-dose chemotherapy and autologous bone marrow support. American Journal of Neuroradiology, 15, 1267–1273.PubMedGoogle Scholar
  58. Syrjala, K. L., Dikmen, S., Langer, S. L., Roth-Roemer, S., & Abrams, J. R. (2004). Neuropsychologic changes from before transplantation to 1 year in patients receiving myeloblative allogeneic hematopoietic cell transplant. Blood, 104, 3386–3392.PubMedCrossRefGoogle Scholar
  59. Syrjala, K. L., Artherholt, S. B., Kurlan, B. F., Langer, S. L., Roth-Roemer, S., Elrod, J. B., et al. (2011). Prospective neurocognitive function over 5 years after allogeneic hematopoietic cell transplantation for cance survivors compared to matched controls at 5 years. Journal of Clinical Oncology, 29, 2397–2404.PubMedCrossRefGoogle Scholar
  60. Tukey, J.W. (1977) Exploratory Data Analysis. Addison-Wesley.Google Scholar
  61. Vardy, J., Wefel, J. S., Ahles, T., Tannock, I. F., & Schagen, S. B. (2008). Cancer and cancer-therapy related cognitive dysfunction: An international perspective from the Venice cognitive workshop. Annals of Oncology, 19, 623–629.PubMedCrossRefGoogle Scholar
  62. Wefel, J. S., Lenzi, R., Theriault, R. L., Davis, R. N., & Meyers, C. A. (2004). The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma: results of a prospective, randomized, longitudinal trial. Cancer, 100, 2292–2299.PubMedCrossRefGoogle Scholar
  63. Wenz, F., Steinvorth, S., Lohr, F., Fruehauf, S., Wildermuth, S., van Kampen, M., et al. (2000). Prospective evaluation of delayed central nervous system (CNS) toxicity of hyperfractionated total body irradiation (TBI). International Journal of Radiation Oncology, Biology, Physics, 48, 1497–1501.PubMedCrossRefGoogle Scholar
  64. Wood, S. M., Meyers, C. A., Faderi, S., Kantarjian, H. M., Pierce, S. H., & Garcia-Manero, G. (2011). Association of anemia and cognitive dysfunction in patients with acute myelogenous leukemia and myelodysplastic syndrome. American Journal of Hematology, 86, 950–952.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • D. D. Correa
    • 1
    • 6
  • J. C. Root
    • 2
    • 7
  • R. Baser
    • 3
  • D. Moore
    • 6
  • K. K. Peck
    • 4
    • 8
  • E. Lis
    • 4
    • 8
  • T. B. Shore
    • 9
  • H. T. Thaler
    • 3
  • A. Jakubowski
    • 5
    • 9
  • N. Relkin
    • 6
  1. 1.Department of NeurologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Department of Psychiatry & Behavioral SciencesMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  3. 3.Department of Epidemiology & BiostatisticsMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  4. 4.Department of RadiologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  5. 5.Department of MedicineMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  6. 6.Department of Neurology & NeuroscienceWeill Cornell Medical CollegeNew YorkUSA
  7. 7.Department of PsychiatryWeill Cornell Medical CollegeNew YorkUSA
  8. 8.Department of RadiologyWeill Cornell Medical CollegeNew YorkUSA
  9. 9.Department of MedicineWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations