Brain Imaging and Behavior

, Volume 6, Issue 4, pp 485–488 | Cite as

Advanced psychometric analysis and the Alzheimer’s Disease Neuroimaging Initiative: reports from the 2011 Friday Harbor conference

  • Dan Mungas
  • Paul K. Crane
  • Laura E. Gibbons
  • Jennifer J. Manly
  • M. Maria Glymour
  • Richard N. Jones
ADNI: Friday Harbor 2011 Workshop SPECIAL ISSUE

Abstract

This article summarizes a special series of articles from The Advanced Psychometric Methods in Cognitive Aging Research conference, held in June, 2011 at Friday Harbor, Washington. This conference used data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to address cognitive change associated with Alzheimer’s disease (AD) and how it related to neuroimaging, genetic, and cerebrospinal fluid biomarkers. The 13 articles in this series present innovative approaches to measuring cognition and studying determinants of cognitive decline in AD.

Keywords

Cognition Neuroimaging Biomarkers Genetics Alzheimer's disease 

References

  1. Crane, P. K., Carle, A., Gibbons, L. E., Insel, P., Mackin, R. S., Gross, A., et al., for the Alzheimer's Disease Neuroimaging Initiative (2012). Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Brain Imaging and Behavior, this special issue.Google Scholar
  2. Debette, S., Bis, J. C., Fornage, M., Schmidt, H., Ikram, M. A., Sigurdsson, S., & Longstreth, W. T., Jr. (2010). Genome-wide association studies of MRI-defined brain infarcts: meta-analysis from the CHARGE Consortium. Stroke, 41(2), 210–217.PubMedCrossRefGoogle Scholar
  3. Dickerson, B. C., & Wolk, D. A. (2011). Dysexecutive versus amnesic phenotypes of very mild Alzheimer’s disease are associated with distinct clinical, genetic and cortical thinning characteristics. Journal of Neurology, Neurosurgery, and Psychiatry, 82(1), 45–51.PubMedCrossRefGoogle Scholar
  4. Fornage, M., Debette, S., Bis, J. C., Schmidt, H., Ikram, M. A., Dufouil, C., & Launer, L. J. (2011). Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Annals of Neurology, 69(6), 928–939.PubMedCrossRefGoogle Scholar
  5. Gibbons, L. E., Carle, A. C., Mackin, R. S., Harvey, D., Mukherjee, S., Insel, P., et al., for the Alzheimer's Disease Neuroimaging Initiative (2012). A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment. Brain Imaging and Behavior, this special issue.Google Scholar
  6. Gross, A. L., Manly, J. J., Pa, J., Johnson, J. K., Park, L. Q., Mitchell, M. B., et al., for the Alzheimer's Disease Neuroimaging Initiative (2012). Cortical signatures of cognition and their relationship to Alzheimer’s disease. Brain Imaging and Behavior, this special issue.Google Scholar
  7. Habeck, C., Risacher, S., Lee, G. J., Glymour, M. M., Mormino, E., Mukherjee, S., et al., for the Alzheimer's Disease Neuroimaging Initiative (2012). Relationship between baseline brain metabolism measured using [18F]FDG PET and memory and executive function in prodromal and early Alzheimer’s disease. Brain Imaging and Behavior, this special issue.Google Scholar
  8. Han, S. D., Gruhl, J., Beckett, L., Dodge, H. H., Stricker, N. H., Farias, S., Mungas, D., for the Alzheimer's Disease Neuroimaging Initiative (2012). Beta amyloid, tau, neuroimaging, and cognition: sequence modeling of biomarkers for Alzheimer’s Disease. Brain Imaging and Behavior, this special issue.Google Scholar
  9. Jack, C. R., Jr., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., & Trojanowski, J. Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology, 9(1), 119–128.PubMedCrossRefGoogle Scholar
  10. Johnson, J. K., Gross, A. L., Pa, J., McLaren, D. G., Park, L. Q., Manly, J. J., for the Alzheimer's Disease Neuroimaging Initiative (2012). Longitudinal change in neuropsychological performance using latent growth models: a study of mild cognitive impairment. Brain Imaging and Behavior, this special issue.Google Scholar
  11. Mukherjee, S., Kim, S., Gibbons, L. E., Nho, K., Risacher, S. L., Glymour, M. M., et al., for the Alzheimer's Disease Neuroimaging Initiative (2012a). Genetic architecture of resilience of executive functioning. Brain Imaging and Behavior, this special issue.Google Scholar
  12. Mukherjee, S., Trittschuh, E., Gibbons, L. E., Mackin, R. S., Saykin, A., Crane, P. K., for the Alzheimer's Disease Neuroimaging Initiative (2012b). Dysexecutive and amnesic AD subtypes defined by single indicator and modern psychometric approaches: relationships with SNPs in ADNI. Brain Imaging and Behavior, this special issue.Google Scholar
  13. Naj, A. C., Jun, G., Beecham, G. W., Wang, L. S., Vardarajan, B. N., Buros, J., & Schellenberg, G. D. (2011). Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nature Genetics, 43(5), 429–435.Google Scholar
  14. Nho, K., Risacher, S. L., Crane, P. K., DeCarli, C., Glymour, M. M., Habeck, C., et al., for the Alzheimer's Disease Neuroimaging Initiative (2012). Voxel and surface-based topography of memory and executive deficits in mild cognitive impairment and Alzheimer’s disease. Brain Imaging and Behavior, this special issue.Google Scholar
  15. Park, L. Q., Gross, A. L., McLaren, D. G., Pa, J., Johnson, J. K., Mitchell, M., Manly, J. J., for the Alzheimer's Disease Neuroimaging Initiative (2012). Confirmatory factor analysis of the ADNI neuropsychological battery. Brain Imaging and Behavior, this special issue.Google Scholar
  16. Ramanan, V. K., Kim, S., Holohan, K., Shen, L., Nho, K., Risacher, S. L., et al., for the Alzheimer's Disease Neuroimaging Initiative (2012). Genome-wide pathway analysis of memory impairment in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort implicates gene candidates, canonical pathways, and networks. Brain Imaging and Behavior, this special issue.Google Scholar
  17. Rosen, W. G., Mohs, R. C., & Davis, K. L. (1984). A new rating scale for Alzheimer’s disease. American Journal of Psychiatry, 141(11), 1356–1364.Google Scholar
  18. Skinner, J., Carvalho, J. O., Potter, G. G., Thames, A., Zelinski, E., Crane, P. K., Gibbons, L. E. for the Alzheimer's Disease Neuroimaging Initiative (2012). The Alzheimer's Disease Assessment Scale-Cognitive-Plus (ADAS-Cog-Plus): an expansion of the ADAS-Cog to improve responsiveness in MCI. Brain Imaging and Behavior, this special issue.Google Scholar
  19. Stricker, N. H., Dodge, H. H., Dowling, N. M., Han, S. D., Erosheva, E. A., Jagust, W. J., for the Alzheimer's Disease Neuroimaging Initiative (2012). CSF biomarker associations with change in hippocampal volume and precuneus thickness: implications for the Alzheimer’s pathological cascade. Brain Imaging and Behavior, this special issue.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Dan Mungas
    • 1
  • Paul K. Crane
    • 2
  • Laura E. Gibbons
    • 2
  • Jennifer J. Manly
    • 3
  • M. Maria Glymour
    • 4
  • Richard N. Jones
    • 5
  1. 1.Department of NeurologyUniversity of California, DavisDavisUSA
  2. 2.Department of MedicineUniversity of WashingtonSeattleUSA
  3. 3.Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging BrainColumbia University Medical CenterNew YorkUSA
  4. 4.Department of Society, Human Development, and HealthHarvard School of Public HealthBostonUSA
  5. 5.Department of PsychiatryInstitute for Aging Research, Hebrew Senior LifeBostonUSA

Personalised recommendations