Brain Imaging and Behavior

, Volume 7, Issue 1, pp 68–76 | Cite as

Neuropsychological variability, symptoms, and brain imaging in chronic schizophrenia

  • Paul G. Nestor
  • Marek Kubicki
  • Motoaki Nakamura
  • Margaret Niznikiewicz
  • James J. Levitt
  • Martha E. Shenton
  • Robert W. McCarley
Original Research


We examined variability in performance on widely-used neuropsychological Wechsler tests of intelligence and memory in a large sample of persons with chronic schizophrenia, a subset of whom had also undergone prior studies of magnetic resonance imaging (MRI) of the orbital frontal cortex (OFC) gray matter and diffusion tensor imaging (DTI) of the cingulum bundle (CB) and the uncinate fasiculus (UF) white matter. In comparison to controls, persons with schizophrenia showed lower scores across neuropsychological tests, with most pronounced drops in processing speed and immediate memory, in relation to oral reading. For patients, greater declines in intelligence and memory each correlated with reduced CB white matter fractional anisotropy and reduced OFC gray matter, respectively. However, only memory decline correlated with severity of negative symptoms. Taken together, these data raise the intriguing question as to whether communication and motivational deficits expressed in negative symptoms may contribute to the relationship of auditory memory decline and OFC volume observed in this patient sample.


Schizophrenia Cingulum bundle Orbital frontal cortex Intelligence Memory 



This work was supported by the National Institute of Health (K02 MH 01110 and R01 MH 50747 to Martha E. Shenton, R01 MH 40799 and P50 080272 to Robert W. McCarley, RO1 MH 63360 to and Margaret Niznikiewicz, R03 MH068464-01 to Marek Kubicki), National Alliance for Research on Schizophrenia and Depression (Marek Kubicki), the Department of Veterans Affairs Merit Awards (Martha E. Shenton, James J. Levitt and Margaret Niznikiewicz, Paul G. Nestor and Robert W. McCarley), and the Department of Veterans Affairs Schizophrenia Center (Robert W. McCarley). This work is also part of the National Alliance for Medical Image Computing (NAMIC), funded by the National Institutes of Health through the NIH Roadmap for Medical Research, Grant U54 EB005149 (Martha E. Shenton and Marek Kubicki).


  1. Aleman, A., Hijman, R., de Haan, E. H. F., & Kahn, R. S. (1999). Memory impairment in schizophrenia: a meta-analysis. American Journal of Psychiatry, 156(9), 1358–1366.PubMedGoogle Scholar
  2. Andreasen, N. (1983). The Scale for the Assessment of Negative Symptoms (SANS). Iowa City: The University of Iowa.Google Scholar
  3. Andreasen, N. (1984). The Scale for the Assessment of Positive Symptoms (SAPS). Iowa City: The University of Iowa.Google Scholar
  4. Armstrong E, Schleicher A, Omran H, Curtis M, & Zilles K. (1995). The ontogeny of human gyrification. Cerebral Cortex, 5, 56–63.Google Scholar
  5. Bonner-Jackson, A., Grossman, L. S., Harrow, M., & Rosen, C. (2010). Neurocognition in schizophrenia: a 20-year multi-follow-up of the course of processing speed and stored knowledge. Comprehensive Psychiatry, 51(5), 471–479.PubMedCrossRefGoogle Scholar
  6. Bouix, S., Martin-Fernandez, M., Ungar, L., Nakamura, M., Koo, M. S., McCarley, R. W., et al. (2007). On evaluating brain tissue classifiers without a ground truth. Neuroimage, 36, 1207–1224.PubMedCrossRefGoogle Scholar
  7. Cannon, T. D., Huttunen, M. O., Lonnqvist, J., Tuulio-Henriksson, A., Pirkola, T., Glahn, D., et al. (2000). The inheritance of neuropsychological dysfunction in twins discordant for schizophrenia. American Journal of Human Genetics, 67(2), 369–382.PubMedCrossRefGoogle Scholar
  8. Censits, D. M., Ragland, J. D., Gur, R. C., & Gur, R. E. (1997). Neuropsychological evidence supporting a neurodevelopmental model of schizophrenia: a longitudinal study. Schizophrenia Research, 24(3), 289–298.PubMedCrossRefGoogle Scholar
  9. Chiavaras, M. M., & Petrides, M. (2000). Orbitofrontal sulci of the human and macaque monkey brain. The Journal of Comparative Neurology, 422(1), 35–54.PubMedCrossRefGoogle Scholar
  10. Cohen, J., & Cohen, P. (1975). Applied multiple regression/correlational analysis for the behavioral sciences. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  11. Curtin, F., & Schulz, P. (1998). Multiple correlations and Bonferroni’s correction. Biological Psychiatry, 44(8), 775–777.PubMedCrossRefGoogle Scholar
  12. Dalby, J. T., & Williams, R. (1986). Preserved reading and spelling ability in psychotic disorders. Psychological Medicine, 16, 171–175.PubMedCrossRefGoogle Scholar
  13. Duvernoy H. M. (1999). The human brain: surface, three-dimensional sectional anatomy with MRI, and blood supply. New York, NY: Springer-Verlag Wien.Google Scholar
  14. Egan, M. F., Goldberg, T. E., Gscheidle, T., Weirich, M., Rawlings, R., Hyde, T. M., et al. (2001). Relative risk for cognitive impairments in siblings of patients with schizophrenia. Biological Psychiatry, 50, 98–107.PubMedCrossRefGoogle Scholar
  15. Egeland, J., Sundet, K., Rund, B. R., Asbjornsen, A., Hugdahl, K., Landro, N. I., et al. (2003). Sensitivity and specificity of memory dysfunction in schizophrenia: a comparison with major depression. Journal of Clinical and Experimental Neuropsychology, 25(1), 79–93.PubMedCrossRefGoogle Scholar
  16. First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (2002). Structured clinical interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition (SCIDI/P). New York: Biometrics Research, New York State Psychiatric Institute.Google Scholar
  17. Harvey, P. D., Friedman, J. I., Bowie, C., Reichenberg, A., McGurk, S. R., Parrella, M., et al. (2006). Validity and stability of performance-based estimates of premorbid educational functioning in older patients with schizophrenia. Journal of Clinical and Experimental Neuropsychology, 28(2), 178–192.PubMedCrossRefGoogle Scholar
  18. Heaton, R. K., ladsjo, J. A., Palmer, B. W., Kuck, J., Marcotte, T. D., & Jeste, D. V. (2001). Stability and course of neuropsychological deficits in schizophrenia. Archives of General Psychiatry, 58(1), 24–32.PubMedCrossRefGoogle Scholar
  19. Heinrichs, R. W., & Zakzanis, K. K. (1998). Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology, 12(3), 426–445.PubMedCrossRefGoogle Scholar
  20. Kay, S. R., Opler, L. A., & Fiszbein, A. (1986). Positive and Negative Syndrome Scale (PANNS) Manual. North Tonawanda: Mental Health Systems, Inc.Google Scholar
  21. Keefe, R. S. E., Eesley, C. E., & Poe, M. P. (2005). Defining a cognitive function decrement in schizophrenia. Biological Psychiatry, 57, 688–691.PubMedCrossRefGoogle Scholar
  22. Knowles, E. E., David, A. S., & Reichenberg, A. (2010). Processing speed deficits in schizophrenia: reexamining the evidence. American Journal of Psychiatry, 167(7), 828–835.PubMedCrossRefGoogle Scholar
  23. Kraepelin, E. (1919). In G. M. Robertson (Ed.), Dementia praecox and Paraphrenia (trans: Barclay, R.M.). New York: Robert E. Kriege. reprinted 1971.Google Scholar
  24. Kremen, W. S., Seidman, L. J., Faraone, S. V., & Tsuang, M. T. (2008). IQ decline in cross-sectional studies of schizophrenia: Methodology and interpretation. Psychiatry Research, 158, 181–194.PubMedCrossRefGoogle Scholar
  25. Kremen, W. S., Seidman, L. J., Pepple, J. R., Lyons, M. J., Tsaung, M. T., & Faraone, S. V. (1994). Neuropsychological risk indicators for schizophrenia: a review of family studies. Schizophrenia Bulletin, 20, 103–119.PubMedCrossRefGoogle Scholar
  26. Kringelbach, M. L. (2005). The human orbitofrontal cortex: linking reward to hedonic experience. Nature reviews. Neuroscience, 6(9), 691–702.PubMedCrossRefGoogle Scholar
  27. Kubicki, M., Westin, C. F., Nestor, P. G., Wible, C. G., Frumin, M., Maier, S. E., et al. (2003). Cingulate fasiculus integrity disruption in schizophrenia: a magnetic resonance diffusion tensor imaging study. Biological Psychiatry, 54(11), 1171–1180.PubMedCrossRefGoogle Scholar
  28. Kubicki, M., Westin, C.-F., Maier, S. E., Frumin, M., Nestor, P. G., Salisbury, D. F., et al. (2002). Uncinate fasiculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. American Journal of Psychiatry, 159(5), 813–820.PubMedCrossRefGoogle Scholar
  29. Mesulam M.M. (1985). Principles of behavioral and cognitive neurology. Philadelphia: F.A. Davis.Google Scholar
  30. Mohamed, S., Paulsen, J. S., O’Leary, D., Arndt, S., & Andreasen, N. (1999). Generalized cognitive deficits in schizophrenia: a study of first-episode patients. Archives of General Psychiatry, 56(8), 749–754.PubMedCrossRefGoogle Scholar
  31. Morecraft, R.J., Geula, C., & Mesulam, M.M. (1992). Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. Journal of Comparative Neurology, 323, 341–7358.Google Scholar
  32. Nakamura, M., Nestor, P. G., Levitt, J. J., Cohen, A., Kawashima, T., Shenton, M. E., et al. (2008). Orbitofrontal volume deficit in schizophrenia and thought disorder. Brain, 131, 180–195.PubMedCrossRefGoogle Scholar
  33. Nakamura, M., Nestor, P. G., McCarley, R. W., Levitt, J. J., Hsu, L., Kawashima, T., et al. (2007). Altered orbitofrontal sulcogyral pattern in schizophrenia. Brain: A Journal of Neurology, 130(Pt 3), 693–707.CrossRefGoogle Scholar
  34. Nestor, P. G., Kubicki, M., Gurrera, R. J., Niznikiewicz, M., Frumin, M., McCarley, R. W., et al. (2004). Neuropsychological correlates of diffusion tensor imaging in schizophrenia. Neuropsychology, 18, 629–637.PubMedCrossRefGoogle Scholar
  35. Nestor, P. G., Kubicki, M., Niznikiewicz, M., Gurrera, R. J., McCarley, R. W., & Shenton, M. E. (2008). Neuropsychological disturbance in schizophrenia: a diffusion tensor imaging study. Neuropsychology, 22(2), 246–254.PubMedCrossRefGoogle Scholar
  36. Nestor, P. G., Niznikiewicz, M., & McCarley, R. W. (2010). Distinct contribution of working memory and social comprehension failures in neuropsychological impairment in schizophrenia. Journal of Nervous and Mental Disease, 198(3), 206–212.PubMedCrossRefGoogle Scholar
  37. Nestor, P. G., Nakamura, M., Niznikiewicz, M., Thompson, E., Levitt, J. J., Choate, V., et al. (2012). In search of the functional neuroanatomy of sociality: MRI subdivisions of frontal cortex and social cognition. Social, Cognitive, and Affective Neuroscience. doi: 10.1093.
  38. Ono, K., Yamamuro, T., Nakamura, T., & Kokubo, T. (1990). Mechanical properties of bone after implantation of apatite-wollastonite containing glass ceramic-fibrin mixture. Journal of Biomedical Materials Research, 24(1), 47–63.PubMedCrossRefGoogle Scholar
  39. Pandya, D.N., Van Hoesen, G.W., & Mesulam, M.M (1981). Efferent connections of the cingulate gyrus in the rhesus monkey. Experimental Brain Research, 42, 319–330Google Scholar
  40. Potter, A. I., & Nestor, P. G. (2010). IQ subtypes in schizophrenia: distinct symptom and neuropsychological profiles. Journal of Nervous and Mental Disease, 198(8), 580–585.PubMedCrossRefGoogle Scholar
  41. Rakic P. (1988). Specification of cerebral cortical areas. Science, 241, 170–176.Google Scholar
  42. Riley, E. M., McGovern, D., Mockler, D., Doku, V. C., OCeallaigh, S., Fannon, D. G., et al. (2000). Neuropsychological functioning in first-episode psychosis-evidence of specific deficits. Schizophrenia Research, 43(1), 47–55.PubMedCrossRefGoogle Scholar
  43. Saykin, A. J., Saykin, A. J., Shtasel, D. L., Gur, R. E., Kester, D. B., Mozley, L. H., et al. (1994). Neuropsychological deficits in neuroleptic naı¨ve patients with first-episode schizophrenia. Archives of General Psychiatry, 51, 124–131.PubMedCrossRefGoogle Scholar
  44. Seidman, L. J., Faraone, S. V., Goldstein, J. M., Kremen, W. S., Horton, N. J., Makris, N., et al. (2002). Left hippocampal volume as a vulnerability indicator for schizophrenia: a magnetic resonance imaging morphometric study of nonpsychotic first-degree relatives. Archives of General Psychiatry, 59(9), 839–849.PubMedCrossRefGoogle Scholar
  45. Seidman, L. J., Giuliano, A. J., Smith, C. W., Stone, W. S., Glatt, S. J., Meyer, E., et al. (2006). Neuropsychological functioning in adolescents and young adults at genetic risk for schizophrenia and affective psychoses: results from the Harvard and Hillside Adolescent High Risk Studies. Schizophrenia Bulletin, 32(3), 507–524.PubMedCrossRefGoogle Scholar
  46. van den Heuvel, M. P., Mandl, R. C., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Human Brain Mapping, 30(10), 3127–3141.PubMedCrossRefGoogle Scholar
  47. Vogt, B.A., & Pandya, D.N. (1987). Cingulate cortex of the rhesus monkey: II. Cortical afferents. Journal of Comparative Neurology, 262, 271–289Google Scholar
  48. Wechsler, D. (1997a). Manual for the Wechsler adult intelligence scale (3rd ed.). San Antonio: Psychological Corporation.Google Scholar
  49. Wechsler, D. (1997b). Wechsler Memory Scale — Third edition (WMS-III). San Antonio: The Psychological Corporation.Google Scholar
  50. Wilkinson, G. S. (1993). Wide Range Achievement Test Revision 3. Wilmington: Wide Range, Inc.Google Scholar
  51. Woodberry, K. A., Seidman, L. J., Giuliano, A. J., Verdi, M. B., Cook, W. L., & McFarlane, W. R. (2010). Neuropsychological profiles in individuals at clinical high risk for psychosis: relationship to psychosis and intelligence. Schizophrenia Research, 123(2–3), 188–198.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Paul G. Nestor
    • 1
    • 2
  • Marek Kubicki
    • 2
    • 3
  • Motoaki Nakamura
    • 2
    • 3
  • Margaret Niznikiewicz
    • 2
  • James J. Levitt
    • 2
    • 3
  • Martha E. Shenton
    • 2
    • 3
  • Robert W. McCarley
    • 2
  1. 1.Department of PsychologyUniversity of MassachusettsBostonUSA
  2. 2.Clinical Neuroscience Division, Laboratory of Neuroscience, Boston VA Healthcare System-Brockton Division, Department of PsychiatryHarvard Medical SchoolBrocktonUSA
  3. 3.Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations