Brain Imaging and Behavior

, Volume 6, Issue 4, pp 528–539

Confirmatory factor analysis of the ADNI neuropsychological battery

  • Lovingly Quitania Park
  • Alden L. Gross
  • Donald G. McLaren
  • Judy Pa
  • Julene K. Johnson
  • Meghan Mitchell
  • Jennifer J. Manly
  • for the Alzheimer’s Disease Neuroimaging Initiative
ADNI: Friday Harbor 2011 Workshop SPECIAL ISSUE

Abstract

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a large multi-center study designed to develop optimized methods for acquiring longitudinal neuroimaging, cognitive, and biomarker measures of AD progression in a large cohort of patients with Alzheimer’s disease (AD), patients with Mild Cognitive Impairment, and healthy controls. Detailed neuropsychological testing was conducted on all participants. We examined the factor structure of the ADNI Neuropsychological Battery across older adults with differing levels of clinical AD severity based on the Clinical Dementia Rating Scale (CDR). Confirmatory factor analysis (CFA) of 23 variables from 10 neuropsychological tests resulted in five factors (memory, language, visuospatial functioning, attention, and executive function/processing speed) that were invariant across levels of cognitive impairment. Thus, these five factors can be used as indicators of cognitive function in older adults who are participants in ADNI.

Keywords

ADNI Neuropsychology Cognition Cognitive change Confirmatory factor analysis 

Supplementary material

11682_2012_9190_MOESM1_ESM.docx (90 kb)
Supplemental Table S1Correlation Matrix for Neuropsychological Tests by Group (n=819) (DOCX 90 kb)

References

  1. Albert, M. (2008). The neuropsychology of the development of Alzheimer’s disease. In F. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (4th ed., pp. 97–132). London: Academic.Google Scholar
  2. Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: a meta-analytic review. Neuropsychology Review, 16(1), 17–42.PubMedCrossRefGoogle Scholar
  3. Austin, P. C. (2003). Type I error inflation in the presence of a ceiling effect. The American Statistician, 57, 97–104.CrossRefGoogle Scholar
  4. Barnett, V., & Lewis, T. (1994). Outliers in statistical data (3rd ed.). Chichester: Wiley.Google Scholar
  5. Binet, A. (1905). L’Année Psychologique, 12, 191–244.Google Scholar
  6. Bontempo, D. E., & Hofer, S. M. (2007). Assessing factorial invariance in cross-sectional and longitudinal studies. In A. D. Ong & M. van Dulmen (Eds.), Handbook of methods in positive psychology (pp. 153–175). New York: Oxford University Press.Google Scholar
  7. Borsboom, D., Romeijn, J. W., & Wicherts, J. M. (2008). Measurement invariance versus selection invariance: Is fair selection possible? Psychological Methods, 13, 75–98.PubMedCrossRefGoogle Scholar
  8. Brookmeyer, R., Evans, D. A., Hebert, L., Langa, K. M., Heeringa, S. G., Plassman, B. L., et al. (2011). National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimer’s & Dementia, 7(1), 61–73.CrossRefGoogle Scholar
  9. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Erlbaum.Google Scholar
  10. Crane, P. K., Narasimhalu, K., Gibbons, L. E., Mungas, D. M., Haneuse, S., & van Belle, G. (2008). Item response theory facilitated cocalibrating cognitive tests and reduced bias in estimated rates of decline. Journal of Clinical Epidemiology, 61, 1018–1027.e9.PubMedCrossRefGoogle Scholar
  11. DeCarli, C., Mungas, D., Harvey, D., Reed, B., Weiner, M., Chui, H., et al. (2004). Memory impairment, but not cerebrovascular disease, predicts progression of MCI to dementia. Neurology, 63(2), 220–227.PubMedCrossRefGoogle Scholar
  12. Desgranges, B., Eustache, F., Rioux, P., de La Sayette, V., & Lechevalier, B. (1996). Memory disorders in Alzheimer’s disease and the organization of human memory. Cortex, 32(3), 387–412.PubMedGoogle Scholar
  13. Dowling, N. M., Hermann, B., La Rue, A., & Sager, M. A. (2010). Latent structure and factorial invariance of a neuropsychological test battery for the study of preclinical Alzheimer’s disease. Neuropsychology, 24(6), 742–756.PubMedCrossRefGoogle Scholar
  14. Drijgers, R. L., Verhey, F. R., Leentjens, A. F., Kohler, S., & Aalten, P. (2011). Neuropsychological correlates of apathy in mild cognitive impairment and Alzheimer’s disease: the role of executive functioning. International Psychogeriatrics, 23(8), 1327–1333.PubMedCrossRefGoogle Scholar
  15. Evans, M. C., Barnes, J., Nielsen, C., Kim, L. G., Clegg, S. L., Blair, M., et al. (2010). Volume changes in Alzheimer’s disease and mild cognitive impairment: cognitive associations. European Radiology, 20(3), 674–82.PubMedCrossRefGoogle Scholar
  16. Fillenbaum, G. G., Peterson, B., & Morris, J. C. (1996). Estimating the validity of the clinical Dementia Rating Scale: the CERAD experience. Consortium to Establish a Registry for Alzheimer’s Disease. Aging (Milano), 8(6), 379–385.Google Scholar
  17. Gallagher, M., & Koh, M. T. (2011). Episodic memory on the path to Alzheimer’s disease. Current Opinion in Neurobiology, 21(6), 929–3.PubMedCrossRefGoogle Scholar
  18. Garner, W. R., Hake, H. W., & Eriksen, C. W. (1956). Operationism and the concept of perception. Psychological Review, 63(3), 149–159.PubMedCrossRefGoogle Scholar
  19. Grossman, M., Koenig, P., Glosser, G., DeVita, C., Moore, P., Rhee, J., et al. (2003). Neural basis for semantic memory difficulty in Alzheimer’s disease: an fMRI study. Brain, 126(Pt 2), 292–311.PubMedCrossRefGoogle Scholar
  20. Harrison, J. E., Buxton, P., Husain, M., & Wise, R. (2000). Short test of semantic and phonological fluency: normal performance, validity and test-retest reliability. British Journal of Clinical Psychology, 39(Pt 2), 181–191.PubMedCrossRefGoogle Scholar
  21. Hayden, K. M., Jones, R. N., Zimmer, C., Plassman, B. L., Browndyke, J. N., Pieper, C., et al. (2011). Factor structure of the National Alzheimer’s Coordinating Centers uniform dataset neuropsychological battery: an evaluation of invariance between and within groups over time. Alzheimer Disease and Associated Disorders, 25(2), 128–137.PubMedCrossRefGoogle Scholar
  22. Heywood, H. B. (1931). On finite sequences of real numbers. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 134(824), 486–501.Google Scholar
  23. Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: sensitivity to under parameterized model misspecification. Psychological Methods, 3, 424–453.CrossRefGoogle Scholar
  24. Jack, C. R. Jr., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., et al. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol, 9(1),119–28.Google Scholar
  25. Jones, S. N., & Ayers, C. R. (2006). Psychometric properties and factor structure of an expanded CERAD neuropsychological battery in an elderly VA sample. Archives of Clinical Neuropsychology, 21(4), 359–365.PubMedCrossRefGoogle Scholar
  26. Kaplan, E., Goodglass, H., & Weintraub, S. (1983). The Boston naming test. Philidelphia: Lea and Febiger.Google Scholar
  27. Landau, S. M., Harvey, D., Madison, C. M., Koeppe, R. A., Reiman, E. M., Foster, N. L., et al. (2011). Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiology of Aging, 32(7), 1207–1218.PubMedCrossRefGoogle Scholar
  28. Leow, A. D., Yanovsky, I., Parikshak, N., Hua, X., Lee, S., Toga, A. W., et al. (2009). Alzheimer’s disease neuroimaging initiative: a one-year follow up study using tensor-based morphometry correlating degenerative rates, biomarkers and cognition. NeuroImage, 45(3), 645–655.PubMedCrossRefGoogle Scholar
  29. MacDonald, M. C., Almor, A., Henderson, V. W., Kempler, D., & Andersen, E. S. (2001). Assessing working memory and language comprehension in Alzheimer’s disease. Brain and Language, 78(1), 17–42.PubMedCrossRefGoogle Scholar
  30. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. [GuidelinePractice Guideline]. Neurology, 34(7), 939–944.PubMedCrossRefGoogle Scholar
  31. Morris, J. C. (1997). Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. International Psychogeriatrics, 9(Suppl 1), 173–176. discussion 177–178.PubMedCrossRefGoogle Scholar
  32. Morris, J. C., Ernesto, C., Schafer, K., Coats, M., Leon, S., Sano, M., et al. (1997). Clinical dementia rating training and reliability in multicenter studies: the Alzheimer’s Disease Cooperative Study experience. Neurology, 48(6), 1508–1510.PubMedCrossRefGoogle Scholar
  33. Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C. R., Jagust, W., et al. (2005). Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimer’s & Dementia, 1(1), 55–66.CrossRefGoogle Scholar
  34. Mungas, D., Widaman, K. F., Reed, B. R., & Tomaszewski Farias, S. (2011). Measurement invariance of neuropsychological tests in diverse older persons. Neuropsychology, 25(2), 260–269.PubMedCrossRefGoogle Scholar
  35. Muthen, L. K., & Muthen, B. O. (2010). MPlus: User’s guide (6th ed.). Los Angeles: Muthen & Muthen.Google Scholar
  36. Nestor, P. J., Fryer, T. D., & Hodges, J. R. (2006). Declarative memory impairments in Alzheimer’s disease and semantic dementia. NeuroImage, 30(3), 1010–1020.PubMedCrossRefGoogle Scholar
  37. Pedraza, O., Lucas, J. A., Smith, G. E., Willis, F. B., Graff-Radford, N. R., Ferman, T. J., et al. (2005). Mayo’s older African American normative studies: confirmatory factor analysis of a core battery. Journal of International Neuropsychological Society, 11(2), 184–191.CrossRefGoogle Scholar
  38. Pereira, F. S., Yassuda, M. S., Oliveira, A. M., & Forlenza, O. V. (2008). Executive dysfunction correlates with impaired functional status in older adults with varying degrees of cognitive impairment. International Psychogeriatrics, 20(6), 1104–1115.PubMedCrossRefGoogle Scholar
  39. Petersen, R. C., Jack, C. R., Jr., Xu, Y. C., Waring, S. C., O’Brien, P. C., Smith, G. E., et al. (2000). Memory and MRI-based hippocampal volumes in aging and AD. Neurology, 54(3), 581–587.PubMedCrossRefGoogle Scholar
  40. Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst, A. C, Harvey, D J., et al. (2010). Alzheimer's disease neuroimaging initiative (ADNI): clinical characterization. Neurology, 74(3), 201–209.Google Scholar
  41. Pike, K. E., & Savage, G. (2008). Memory profiling in mild cognitive impairment: can we determine risk for Alzheimer’s disease? Journal of Neuropsychology, 2(Pt 2), 361–372.PubMedCrossRefGoogle Scholar
  42. Ready, R. E., Ott, B. R., & Grace, J. (2004). Validity of informant reports about AD and MCI patients’ memory. Alzheimer Disease and Associated Disorders, 18(1), 11–16.PubMedCrossRefGoogle Scholar
  43. Reise, S. P., Widaman, K. F., & Pugh, R. H. (1993). Confirmatory factor analysis and item response theory: two approaches for exploring measurement invariance. Psychological Bulletin, 114(3), 552–566.PubMedCrossRefGoogle Scholar
  44. Reitan, R. M., & Wolfson, D. (1985). The Halstead-Reitan neuropsychological test battery (2nd ed.). Tucson: Neuropsychology Press.Google Scholar
  45. Rey, A. (1964). L’examen clinique en psychologie [clinical examination in psychology]. Paris: Presses Univeritaires de France.Google Scholar
  46. Rozzini, L., Chilovi, B. V., Conti, M., Bertoletti, E., Delrio, I., Trabucchi, M., et al. (2007). Conversion of amnestic Mild Cognitive Impairment to dementia of Alzheimer type is independent to memory deterioration. International Journal of Geriatric Psychiatry, 22(12), 1217–1222.PubMedCrossRefGoogle Scholar
  47. Siedlecki, K. L., Honig, L. S., & Stern, Y. (2008). Exploring the structure of a neuropsychological battery across healthy elders and those with questionable dementia and Alzheimer’s disease. Neuropsychology, 22(3), 400–411.PubMedCrossRefGoogle Scholar
  48. Spaan, P. E., Raaijmakers, J. G., & Jonker, C. (2003). Alzheimer’s disease versus normal ageing: a review of the efficiency of clinical and experimental memory measures. Journal of Clinical and Experimental Neuropsychology, 25(2), 216–233.PubMedCrossRefGoogle Scholar
  49. Steiger, J. H. (1989). EzPath: A supplementary module for SYSTAT and SYGRAPH. Evanston: SYSTAT.Google Scholar
  50. Stern, Y., Albert, S., Tang, M. X., & Tsai, W. Y. (1999). Rate of memory decline in AD is related to education and occupation: cognitive reserve? Neurology, 53(9), 1942–1947.PubMedCrossRefGoogle Scholar
  51. Strauss, M. E., Thompson, P., Adams, N. L., Redline, S., & Burant, C. (2000). Evaluation of a model of attention with confirmatory factor analysis. Neuropsychology, 14(2), 201–208.PubMedCrossRefGoogle Scholar
  52. Tuokko, H. A., Chou, P. H., Bowden, S. C., Simard, M., Ska, B., & Crossley, M. (2009). Partial measurement equivalence of French and English versions of the Canadian Study of Health and Aging neuropsychological battery. Journal of the International Neuropsychological Society, 15(3), 416–425.PubMedCrossRefGoogle Scholar
  53. Wechsler, D. (1981). Manual for the Wechsler adult intelligence scale-revised. New York: The Psychological Corporation.Google Scholar
  54. Weiner, M. W., Aisen, P. S., Jack, C. R. Jr., Jagust, W. J., Trojanowski, J.Q., Shaw, L., et al. (2010). Alzheimer's disease neuroimaging initiative. The Alzheimer's disease neuroimaging initiative: progress report and future plans. Alzheimers Dement, 6(3):202–11.e7.Google Scholar
  55. Welsh, K., Butters, N., Hughes, J., Mohs, R., & Heyman, A. (1991). Detection of abnormal memory decline in mild cases of Alzheimer’s disease using CERAD neuropsychological measures. Archives of Neurology, 48(3), 278–281.PubMedCrossRefGoogle Scholar
  56. Widaman, K. F., Ferrer, E., & Conger, R. D. (2010). Factorial invariance within longitudinal structural equation models: measuring the same construct across time. Child Dev Perspect, 4(1), 10–18.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Lovingly Quitania Park
    • 1
  • Alden L. Gross
    • 2
  • Donald G. McLaren
    • 4
    • 5
    • 6
    • 7
  • Judy Pa
    • 3
  • Julene K. Johnson
    • 3
    • 8
  • Meghan Mitchell
    • 4
    • 5
    • 6
  • Jennifer J. Manly
    • 9
  • for the Alzheimer’s Disease Neuroimaging Initiative
  1. 1.Alzheimer’s Disease Center, UCDMC Department of NeurologyUniversity of California, DavisSacramentoUSA
  2. 2.Institute for Aging Research, Harvard Medical School and Division of GerontologyBeth Israel Deaconess Medical CenterBostonUSA
  3. 3.Department of NeurologyUniversity of California, San FranciscoSan FranciscoUSA
  4. 4.Geriatric Research Education and Clinical CenterENRM Veterans HospitalBedfordUSA
  5. 5.Department of NeurologyMassachusetts General HospitalBostonUSA
  6. 6.Harvard Medical SchoolBostonUSA
  7. 7.Athinoula A. Martinos Center for Biomedical Imaging Department of RadiologyMassachusetts General HospitalCharlestownUSA
  8. 8.Institute for Health and Aging, Department of Social and Behavioral SciencesUniversity of California, San FranciscoSan FranciscoUSA
  9. 9.Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging BrainColumbia University Medical CenterNew YorkUSA

Personalised recommendations