Brain Imaging and Behavior

, Volume 7, Issue 1, pp 1–14 | Cite as

Brain regions associated with psychological pain: implications for a neural network and its relationship to physical pain

  • Esther L. MeerwijkEmail author
  • Judith M. Ford
  • Sandra J. Weiss


Research on brain areas involved in experiencing emotion and physical pain is abundant; however, psychological pain has received little attention in studies of the brain. The purpose of this systematic review was to provide an overview of studies on brain function related to psychological pain. The review was limited to studies in which participants experienced actual psychological pain or recalled a significant autobiographical event that may be assumed to have involved psychological pain. Based on results of the studies (N = 18), a tentative neural network for psychological pain is proposed that includes the thalamus, anterior and posterior cingulate cortex, the prefrontal cortex, cerebellum, and parahippocampal gyrus. Results indicated that grief may be a more accurate exemplar of psychological pain than recalled sadness, with indications of greater arousal during psychological pain. The proposed neural network for psychological pain overlaps to some extent with brain regions involved in physical pain, but results suggest a markedly reduced role for the insula, caudate, and putamen during psychological pain. Psychological pain is well known for its association with depression and as a precursor of suicidal behavior. Thus, identification of brain areas involved in psychological pain may help guide development of interventions to decrease mortality and morbidity.


Psychological pain Emotional pain Emotion Pain Brain 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. Apkarian, A. V., Bushnell, M. C., Treede, R. D., & Zubieta, J. K. (2005). Human brain mechanisms of pain perception and regulation in health and disease. European Journal of Pain, 9(4), 463–484. doi: 10.1016/j.ejpain.2004.11.001.PubMedCrossRefGoogle Scholar
  2. Apkarian, A. V., Baliki, M. N., & Geha, P. Y. (2009). Towards a theory of chronic pain. Progress in Neurobiology, 87(2), 81–97. doi: 10.1016/j.pneurobio.2008.09.018.PubMedCrossRefGoogle Scholar
  3. Biro, D. (2010). Is there such a thing as psychological pain? and why It matters. Culture, Medicine and Psychiatry. doi: 10.1007/s11013-010-9190-y.
  4. Borsook, D., Moulton, E. A., Tully, S., Schmahmann, J. D., & Becerra, L. (2008). Human cerebellar responses to brush and heat stimuli in healthy and neuropathic pain subjects. Cerebellum, 7(3), 252–272. doi: 10.1007/s12311-008-0011-6.PubMedCrossRefGoogle Scholar
  5. Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222.PubMedCrossRefGoogle Scholar
  6. Chavez-Hernandez, A. M., Leenaars, A. A., Chavez-de Sanchez, M. I., & Leenaars, L. (2009). Suicide notes from Mexico and the United States: a thematic analysis. Salud Pública de México, 51(4), 314–320.PubMedCrossRefGoogle Scholar
  7. Colibazzi, T., Posner, J., Wang, Z., Gorman, D., Gerber, A., Yu, S., et al. (2010). Neural systems subserving valence and arousal during the experience of induced emotions. Emotion, 10(3), 377–389. doi: 10.1037/a0018484.PubMedCrossRefGoogle Scholar
  8. Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2), 192–205.PubMedCrossRefGoogle Scholar
  9. Davidson, R. J., & Irwin, W. (1999). The functional neuroanatomy of emotion and affective style. Trends in Cognitive Sciences, 3(1), 11–21.PubMedCrossRefGoogle Scholar
  10. Drevets, W. C., & Raichle, M. E. (1998). Reciprocal suppression of regional cerebral blood flow during emotional versus higher cognitive processes: implications for interactions between emotion and cognition. Cognition and Emotion. Special Issue: Neuropsychological perspectives on affective and anxiety disorders, 12(3), 353–385.Google Scholar
  11. Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907–2926. doi: 10.1002/hbm.20718.PubMedCrossRefGoogle Scholar
  12. Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An FMRI study of social exclusion. Science, 302(5643), 290–292. doi: 10.1126/science.1089134.PubMedCrossRefGoogle Scholar
  13. Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. B., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 2(4), 189–210.CrossRefGoogle Scholar
  14. George, M. S., Ketter, T. A., Parekh, P. I., Herscovitch, P., & Post, R. M. (1996). Gender differences in regional cerebral blood flow during transient self-induced sadness or happiness. Biological Psychiatry, 40(9), 859–871. doi: 10.1016/0006-3223(95)00572-2.PubMedCrossRefGoogle Scholar
  15. Gerber, A. J., Posner, J., Gorman, D., Colibazzi, T., Yu, S., Wang, Z., et al. (2008). An affective circumplex model of neural systems subserving valence, arousal, and cognitive overlay during the appraisal of emotional faces. Neuropsychologia, 46(8), 2129–2139. doi: 10.1016/j.neuropsychologia.2008.02.032.PubMedCrossRefGoogle Scholar
  16. Gündel, H., O’Connor, M. F., Littrell, L., Fort, C., & Lane, R. D. (2003). Functional neuroanatomy of grief: an FMRI study. The American Journal of Psychiatry, 160(11), 1946–1953.PubMedCrossRefGoogle Scholar
  17. Hilz, M. J., Devinsky, O., Szczepanska, H., Borod, J. C., Marthol, H., & Tutaj, M. (2006). Right ventromedial prefrontal lesions result in paradoxical cardiovascular activation with emotional stimuli. Brain, 129(Pt 12), 3343–3355. doi: 10.1093/brain/awl299.PubMedCrossRefGoogle Scholar
  18. Hudson, A. J. (2000). Pain perception and response: central nervous system mechanisms. Canadian Journal of Neurological Sciences, 27(1), 2–16.PubMedGoogle Scholar
  19. Keedwell, P. A., Andrew, C., Williams, S. C., Brammer, M. J., & Phillips, M. L. (2005). A double dissociation of ventromedial prefrontal cortical responses to sad and happy stimuli in depressed and healthy individuals. Biological Psychiatry, 58(6), 495–503. doi: 10.1016/j.biopsych.2005.04.035.PubMedCrossRefGoogle Scholar
  20. Kersting, A., Ohrmann, P., Pedersen, A., Kroker, K., Samberg, D., Bauer, J., et al. (2009). Neural activation underlying acute grief in women after the loss of an unborn child. The American Journal of Psychiatry, 166(12), 1402–1410. doi: 10.1176/appi.ajp.2009.08121875.PubMedCrossRefGoogle Scholar
  21. Kilpatrick, L., & Cahill, L. (2003). Amygdala modulation of parahippocampal and frontal regions during emotionally influenced memory storage. NeuroImage, 20(4), 2091–2099.PubMedCrossRefGoogle Scholar
  22. Lancaster, J. L., Rainey, L. H., Summerlin, J. L., Freitas, C. S., Fox, P. T., Evans, A. C., et al. (1997). Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Human Brain Mapping, 5(4), 238–242. doi: 10.1002/(SICI)1097-0193(1997)5:4<238::AID-HBM6>3.0.CO;2-4.PubMedCrossRefGoogle Scholar
  23. Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., et al. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10(3), 120–131. doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8.PubMedCrossRefGoogle Scholar
  24. Lane, R. D., Reiman, E. M., Ahern, G. L., Schwartz, G. E., & Davidson, R. J. (1997). Neuroanatomical correlates of happiness, sadness, and disgust. The American Journal of Psychiatry, 154(7), 926–933.PubMedGoogle Scholar
  25. Liotti, M., Mayberg, H. S., McGinnis, S., Brannan, S. L., & Jerabek, P. (2002). Unmasking disease-specific cerebral blood flow abnormalities: mood challenge in patients with remitted unipolar depression. The American Journal of Psychiatry, 159(11), 1830–1840.PubMedCrossRefGoogle Scholar
  26. Macdonald, G., & Leary, M. R. (2005). Why does social exclusion hurt? The relationship between social and physical pain. Psychological Bulletin, 131(2), 202–223. doi: 10.1037/0033-2909.131.2.202.PubMedCrossRefGoogle Scholar
  27. Martin, M. (1990). On the induction of mood. Clinical Psychology Review, 10(6), 669–697.CrossRefGoogle Scholar
  28. Mee, S., Bunney, B. G., Reist, C., Potkin, S. G., & Bunney, W. E. (2006). Psychological pain: a review of evidence. Journal of Psychiatric Research, 40(8), 680–690. doi: 10.1016/j.jpsychires.2006.03.003.PubMedCrossRefGoogle Scholar
  29. Mee, S., Bunney, B. G., Bunney, W. E., Hetrick, W., Potkin, S. G., & Reist, C. (2011). Assessment of psychological pain in major depressive episodes. Journal of Psychiatric Research, 45(11), 1504–1510. doi: 10.1016/j.jpsychires.2011.06.011.PubMedCrossRefGoogle Scholar
  30. Meerwijk, E. L., & Weiss, S. J. (2011). Toward a unifying definition of psychological pain. Journal of Loss & Trauma, 16(5), 402–412, doi: 10.1080/15325024.2011.572044.Google Scholar
  31. Moulton, E. A., Elman, I., Pendse, G., Schmahmann, J., Becerra, L., & Borsook, D. (2011). Aversion-related circuitry in the cerebellum: responses to noxious heat and unpleasant images. Journal of Neuroscience, 31(10), 3795–3804. doi: 10.1523/JNEUROSCI.6709-10.2011.PubMedCrossRefGoogle Scholar
  32. Munro, B. H. (2005). Statistical methods for health care research (5th ed.). Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
  33. Murray, H. A. (2008). Explorations in personality (70th ed.). New York, NY: Oxford University Press.Google Scholar
  34. Najib, A., Lorberbaum, J. P., Kose, S., Bohning, D. E., & George, M. S. (2004). Regional brain activity in women grieving a romantic relationship breakup. The American Journal of Psychiatry, 161(12), 2245–2256. doi: 10.1176/appi.ajp.161.12.2245.PubMedCrossRefGoogle Scholar
  35. Nielen, M. M., Heslenfeld, D. J., Heinen, K., Van Strien, J. W., Witter, M. P., Jonker, C., et al. (2009). Distinct brain systems underlie the processing of valence and arousal of affective pictures. Brain and Cognition, 71(3), 387–396. doi: 10.1016/j.bandc.2009.05.007.PubMedCrossRefGoogle Scholar
  36. O’Connor, M. F., Gündel, H., McRae, K., & Lane, R. D. (2007). Baseline vagal tone predicts BOLD response during elicitation of grief. Neuropsychopharmacology, 32(10), 2184–2189. doi: 10.1038/sj.npp.1301342.PubMedCrossRefGoogle Scholar
  37. O’Connor, M. F., Wellisch, D. K., Stanton, A. L., Eisenberger, N. I., Irwin, M. R., & Lieberman, M. D. (2008). Craving love? Enduring grief activates brain’s reward center. NeuroImage, 42(2), 969–972. doi: 10.1016/j.neuroimage.2008.04.256.PubMedCrossRefGoogle Scholar
  38. Olié, E., Guillaume, S., Jaussent, I., Courtet, P., & Jollant, F. (2010). Higher psychological pain during a major depressive episode may be a factor of vulnerability to suicidal ideation and act. Journal of Affective Disorders, 120(1–3), 226–230. doi: 10.1016/j.jad.2009.03.013.PubMedCrossRefGoogle Scholar
  39. Onoda, K., Okamoto, Y., Nakashima, K., Nittono, H., Ura, M., & Yamawaki, S. (2009). Decreased ventral anterior cingulate cortex activity is associated with reduced social pain during emotional support. Social Neuroscience, 4(5), 443–454. doi: 10.1080/17470910902955884.PubMedCrossRefGoogle Scholar
  40. Orbach, I., Mikulincer, M., Gilboa-Schechtman, E., & Sirota, P. (2003). Mental pain and its relationship to suicidality and life meaning. Suicide & Life-Threatening Behavior, 33(3), 231–241.CrossRefGoogle Scholar
  41. Orbach, I., Mikulincer, M., Sirota, P., & Gilboa-Schechtman, E. (2003). Mental pain: a multidimensional operationalization and definition. Suicide & Life-Threatening Behavior, 33(3), 219–230.CrossRefGoogle Scholar
  42. Pardo, J. V., Pardo, P. J., & Raichle, M. E. (1993). Neural correlates of self-induced dysphoria. The American Journal of Psychiatry, 150(5), 713–719.PubMedGoogle Scholar
  43. Pelletier, M., Bouthillier, A., Levesque, J., Carrier, S., Breault, C., Paquette, V., et al. (2003). Separate neural circuits for primary emotions? Brain activity during self-induced sadness and happiness in professional actors. Neuroreport, 14(8), 1111–1116. doi: 10.1097/01.wnr.0000075421.59944.69.PubMedCrossRefGoogle Scholar
  44. Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16(2), 331–348. doi: 10.1006/nimg.2002.1087.PubMedCrossRefGoogle Scholar
  45. Pompili, M., Lester, D., Leenaars, A. A., Tatarelli, R., & Girardi, P. (2008). Psychache and suicide: a preliminary investigation. Suicide & Life-Threatening Behavior, 38(1), 116–121.CrossRefGoogle Scholar
  46. Price, D. D. (2000). Psychological and neural mechanisms of the affective dimension of pain. Science, 288(5472), 1769–1772.PubMedCrossRefGoogle Scholar
  47. Prince, M., Patel, V., Saxena, S., Maj, M., Maselko, J., Phillips, M. R., et al. (2007). No health without mental health. Lancet, 370(9590), 859–877. doi: 10.1016/S0140-6736(07)61238-0.PubMedCrossRefGoogle Scholar
  48. Ramnani, N. (2006). The primate cortico-cerebellar system: anatomy and function. Nature Reviews Neuroscience, 7(7), 511–522. doi: 10.1038/nrn1953.PubMedCrossRefGoogle Scholar
  49. Reisch, T., Seifritz, E., Esposito, F., Wiest, R., Valach, L., & Michel, K. (2010). An fMRI study on mental pain and suicidal behavior. Journal of Affective Disorders. doi: 10.1016/j.jad.2010.03.005.
  50. Sackeim, H. A., Greenberg, M. S., Weiman, A. L., Gur, R. C., Hungerbuhler, J. P., & Geschwind, N. (1982). Hemispheric asymmetry in the expression of positive and negative emotions. Neurologic evidence. Archives of Neurology, 39(4), 210–218.PubMedCrossRefGoogle Scholar
  51. Schmahl, C. G., Vermetten, E., Elzinga, B. M., & Bremner, J. D. (2004). A positron emission tomography study of memories of childhood abuse in borderline personality disorder. Biological Psychiatry, 55(7), 759–765. doi: 10.1016/j.biopsych.2003.11.007.PubMedCrossRefGoogle Scholar
  52. Schmahmann, J. D. (2004). Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. The Journal of Neuropsychiatry and Clinical Neurosciences, 16(3), 367–378. doi: 10.1176/appi.neuropsych.16.3.367.PubMedCrossRefGoogle Scholar
  53. Schmahmann, J. D., & Pandya, D. N. (1997). The cerebrocerebellar system. International Review of Neurobiology, 41, 31–60.PubMedCrossRefGoogle Scholar
  54. Schnitzler, A., & Ploner, M. (2000). Neurophysiology and functional neuroanatomy of pain perception. Journal of Clinical Neurophysiology, 17(6), 592–603.PubMedCrossRefGoogle Scholar
  55. Sergent, J. (1994). Brain-imaging studies of cognitive functions. Trends in Neurosciences, 17(6), 221–227.PubMedCrossRefGoogle Scholar
  56. Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience, 12(3), 154–167. doi: 10.1038/nrn2994.PubMedCrossRefGoogle Scholar
  57. Sherwood, L. (2010). Human physiology: from cells to systems (7th ed.). Belmont, CA: Cengage Learning.Google Scholar
  58. Shneidman, E. S. (1998). Perspectives on suicidology: further reflections on suicide and psychache. Suicide & Life-Threatening Behavior, 28(3), 245–250.Google Scholar
  59. Soumani, A., Damigos, D., Oulis, P., Masdrakis, V., Ploumpidis, D., Mavreas, V., et al. (2011). Mental pain and suicide risk: application of the greek version of the Mental Pain and the Tolerance of Mental Pain scale. Psychiatriki, 22(4), 330–340.PubMedGoogle Scholar
  60. Strotzer, M. (2009). One century of brain mapping using Brodmann areas. Klinische Neuroradiologie, 19(3), 179–186. doi: 10.1007/s00062-009-9002-3.PubMedCrossRefGoogle Scholar
  61. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. 3-dimensional proportional system: an approach to cerebral imaging. New York: Thieme. Thieme Classics.Google Scholar
  62. Tanida, M., Sakatani, K., Takano, R., & Tagai, K. (2004). Relation between asymmetry of prefrontal cortex activities and the autonomic nervous system during a mental arithmetic task: near infrared spectroscopy study. Neuroscience Letters, 369(1), 69–74. doi: 10.1016/j.neulet.2004.07.076.PubMedCrossRefGoogle Scholar
  63. Troister, T., & Holden, R. R. (2010). Comparing psychache, depression, and hopelessness in their associations with suicidality: a test of Shneidman’s theory of suicide. Personality and Individual Differences, 49(7), 689–693. doi: 10.1016/j.paid.2010.06.006.CrossRefGoogle Scholar
  64. Tucker, D. M. (1981). Lateral brain function, emotion, and conceptualization. Psychological Bulletin, 89(1), 19–46.PubMedCrossRefGoogle Scholar
  65. van Heeringen, K., Van den Abbeele, D., Vervaet, M., Soenen, L., & Audenaert, K. (2010). The functional neuroanatomy of mental pain in depression. Psychiatry Research. doi: 10.1016/j.pscychresns.2009.07.011.
  66. Vogt, B. A. (2005). Pain and emotion interactions in subregions of the cingulate gyrus. Nature Reviews Neuroscience, 6(7), 533–544. doi: 10.1038/nrn1704.PubMedCrossRefGoogle Scholar
  67. Wager, T. D., Phan, K. L., Liberzon, I., & Taylor, S. F. (2003). Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging. NeuroImage, 19(3), 513–531.PubMedCrossRefGoogle Scholar
  68. Weiss, S. J., Haber, J., Horowitz, J. A., Stuart, G. W., & Wolfe, B. (2009). The inextricable nature of mental and physical health: implications for integrative care. Journal of the American Psychiatric Nurses Association, 15(6), 371–382. doi: 10.1177/1078390309352513.PubMedCrossRefGoogle Scholar
  69. Wolf, U., Rapoport, M. J., & Schweizer, T. A. (2009). Evaluating the affective component of the cerebellar cognitive affective syndrome. The Journal of Neuropsychiatry and Clinical Neurosciences, 21(3), 245–253. doi: 10.1176/appi.neuropsych.21.3.245.PubMedCrossRefGoogle Scholar
  70. Yakusheva, T. A., Shaikh, A. G., Green, A. M., Blazquez, P. M., Dickman, J. D., & Angelaki, D. E. (2007). Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron, 54(6), 973–985. doi: 10.1016/j.neuron.2007.06.003.PubMedCrossRefGoogle Scholar
  71. Zubieta, J. K., Ketter, T. A., Bueller, J. A., Xu, Y., Kilbourn, M. R., Young, E. A., et al. (2003). Regulation of human affective responses by anterior cingulate and limbic mu-opioid neurotransmission. Archives of General Psychiatry, 60(11), 1145–1153. doi: 10.1001/archpsyc.60.11.1145.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Esther L. Meerwijk
    • 1
    Email author
  • Judith M. Ford
    • 2
  • Sandra J. Weiss
    • 1
  1. 1.Department of Community Health SystemsUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of PsychiatryUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations