Advertisement

Brain Imaging and Behavior

, Volume 6, Issue 2, pp 329–342 | Cite as

Robust detection of traumatic axonal injury in individual mild traumatic brain injury patients: Intersubject variation, change over time and bidirectional changes in anisotropy

  • Michael L. LiptonEmail author
  • Namhee Kim
  • Young K. Park
  • Miriam B. Hulkower
  • Tova M. Gardin
  • Keivan Shifteh
  • Mimi Kim
  • Molly E. Zimmerman
  • Richard B. Lipton
  • Craig A. Branch
mTBI SPECIAL ISSUE

Abstract

To identify and characterize otherwise occult inter-individual spatial variation of white matter abnormalities across mild traumatic brain injury (mTBI) patients. After informed consent and in compliance with Health Insurance Portability and Accountability Act (HIPAA), Diffusion tensor imaging (DTI) was performed on a 3.0 T MR scanner in 34 mTBI patients (19 women; 19–64 years old) and 30 healthy control subjects. The patients were imaged within 2 weeks of injury, 3 months after injury, and 6 months after injury. Fractional anisotropy (FA) images were analyzed in each patient. To examine white matter diffusion abnormalities across the entire brain of individual patients, we applied Enhanced Z-score Microstructural Assessment for Pathology (EZ-MAP), a voxelwise analysis optimized for the assessment of individual subjects. Our analysis revealed areas of abnormally low or high FA (voxel-wise P-value < 0.05, cluster-wise P-value < 0.01(corrected for multiple comparisons)). The spatial pattern of white matter FA abnormalities varied among patients. Areas of low FA were consistent with known patterns of traumatic axonal injury. Areas of high FA were most frequently detected in the deep and subcortical white matter of the frontal, parietal, and temporal lobes, and in the anterior portions of the corpus callosum. The number of both abnormally low and high FA voxels changed during follow up. Individual subject assessments reveal unique spatial patterns of white matter abnormalities in each patient, attributable to inter-individual differences in anatomy, vulnerability to injury and mechanism of injury. Implications of high FA remain unclear, but may evidence a compensatory mechanism or plasticity in response to injury, rather than a direct manifestation of brain injury.

Keywords

Mild traumatic brain injury (mTBI) MRI Diffusion tensor imaging (DTI) Traumatic axonal injury (TAI) Image processing and analysis 

Abbreviations

CT

Computerized tomography

DTI

Diffusion tensor imaging

EZ

Enhanced Z-score

EZ-MAP

Enhanced Z-score microstructural assessment for pathology

FA

Fractional anisotropy

GCS

Glasgow Coma Scale

GRF

Gaussian Random Field

HIPAA

Health Insurance Portability and Accountability Act

IRB

Institutional Review Board

JHU

Johns Hopkins University

MNI

Montreal Neurological Institute

MR

Magnetic resonance

mTBI

Mild traumatic brain injury

ROC

Receiver operating characteristic

SD

Standard deviation

TAI

Traumatic axonal injury

TBI

Traumatic brain injury

References

  1. Ardekani, B. (1995). A fully automatic multimodality image registration algorithm. Journal of Computer Assisted Tomography, 19(4), 615–623.PubMedCrossRefGoogle Scholar
  2. Ardekani, B., Guckemus, S., Bachman, A., Hoptman, M. J., Wojtaszek, M., & Nierenberg, J. (2005). Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. Journal of Neuroscience Methods, 142(1), 67–76.PubMedCrossRefGoogle Scholar
  3. Bazarian, J. J., Zhong, J., Blyth, B., Zhu, T., Kavcic, V., & Peterson, D. (2007). Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: a pilot study. [Article]. Journal of Neurotrauma, 24(9), 1447–1459. doi: 10.1089/neu.2007.0241.PubMedCrossRefGoogle Scholar
  4. Bennett, R. E., Mac Donald, C. L., & Brody, D. L. (2012). Diffusion tensor imaging detects axonal injury in a mouse model of repetitive closed-skull traumatic brain injury. Neuroscience Letters. doi: 10.1016/j.neulet.2012.02.024.
  5. Bigler, E. D. & Maxwell, W. L. (2012). Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings. Brain Imaging and Behavior. This special issue.Google Scholar
  6. Budde, M. D., Janes, L., Gold, E., Turtzo, L. C., & Frank, J. A. (2011). The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: validation in the rat using Fourier analysis of stained tissue sections. [Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t]. Brain: A journal of neurology, 134(Pt 8), 2248–2260. doi: 10.1093/brain/awr161.CrossRefGoogle Scholar
  7. Crooks, D. (1991). The pathological concept of diffuse axonal injury: its pathogenesis and the assessment of severity. The Journal of Pathology, 165(1), 5–10.PubMedCrossRefGoogle Scholar
  8. Esselman, P., & Uomoto, J. M. (1995). Classification of the spectrum of mild traumatic brain injury. Brain Injury, 9(4), 417–424.PubMedCrossRefGoogle Scholar
  9. Friston, K. J., Worsley, K. J., Frackowiak, R. S. J., Mazziotta, J. C., & Evans, A. C. (1994). Assessing the significance of focal activations using their spatial extent. Human Brain Mapping, 1, 210–220.CrossRefGoogle Scholar
  10. Geary, E. K., Kraus, M. F., Pliskin, N. H., & Little, D. M. (2010). Verbal learning differences in chronic mild traumatic brain injury. Journal of the International Neuropsychological Society, 16(3), 506–516. doi: 10.1017/S135561771000010X.PubMedCrossRefGoogle Scholar
  11. Greer, J. E., McGinn, M. J., & Povlishock, J. T. (2011). Diffuse traumatic axonal injury in the mouse induces atrophy, c-Jun activation, and axonal outgrowth in the axotomized neuronal population. Journal of Neuroscience, 31(13), 5089–5105. doi: 10.1523/jneurosci.5103-10.2011.PubMedCrossRefGoogle Scholar
  12. Hammoud, D., & Wasserman, B. A. (2002). Diffuse axonal injuries: a pathophysiology and imaging. Neuroimaging Clinics of North America, 12(2), 205–216.PubMedCrossRefGoogle Scholar
  13. Hartikainen, K. M., Waljas, M., Isoviita, T., Dastidar, P., Liimatainen, S., Solbakk, A. K., et al. (2010). Persistent symptoms in mild to moderate traumatic brain injury associated with executive dysfunction. Journal of Clinical and Experimental Neuropsychology, 1–8. doi: 10.1080/13803390903521000.
  14. Holmes, C., Hoge, R., Collins, L., Woods, R., Toga, A. W., & Evans, A. C. (1998). Enhancement of MR images using registration for signal averaging. Journal of Computer Assisted Tomography, 22(2), 324–333.PubMedCrossRefGoogle Scholar
  15. Inglese, M., Makani, S., Johnson, G., Cohen, B. A., Silver, J. A., Gonen, O., et al. (2005). Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. Journal of Neurosurgery, 103(2), 298–303.PubMedCrossRefGoogle Scholar
  16. Kim, N., Hulkower, M. B., Park, Y., Gardin, T. M., Smith, J. L., Branch, C. A., et al. (2011). Robust Detection of White Matter Injury in Individual Patients After Mild Traumatic Brain Injury Paper presented at the ISMRM 19th Annual Meeting and Exhibition, Montreal, Canada, May 9, 2011.Google Scholar
  17. Kou, Z., Wu, Z., Tong, K. A., Holshouser, B., Benson, R. R., Hu, J., et al. (2010). The role of advanced MR imaging findings as biomarkers of traumatic brain injury. The Journal of Head Trauma Rehabilitation, 25(4), 267–282. doi: 10.1097/HTR.0b013e3181e54793.PubMedCrossRefGoogle Scholar
  18. Kraus, M. F., Susmaras, T., Caughlin, B. P., Walker, C. J., Sweeney, J. A., & Little, D. M. (2007). White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. [Article]. Brain, 130, 2508–2519. doi: 10.1093/brain/awm216.PubMedCrossRefGoogle Scholar
  19. Levin, H. S., Wilde, E., Troyanskaya, M., Petersen, N. J., Scheibel, R., Newsome, M., et al. (2010). Diffusion tensor imaging of mild to moderate blast-related traumatic brain injury and its sequelae. Journal of Neurotrauma, 27(4), 683–694. doi: doi:10.1089/neu.2009.1073.PubMedCrossRefGoogle Scholar
  20. Lim, K., Ardekani, B. A., Nierenberg, J., Butler, P. D., Javitt, D. C., & Hoptman, M. J. (2006). Voxelwise correlational analyses of white matter integrity in multiple cognitive domains in schizophrenia. The American Journal of Psychiatry, 163(11), 2008–2010.PubMedCrossRefGoogle Scholar
  21. Lipton, M. L., Gulko, E., Zimmerman, M. E., Friedman, B. W., Kim, M., Gelella, E., et al. (2009). Diffusion tensor imaging implicates prefrontal axonal injury in executive function impairment following mild traumatic brain injury. Radiology, 252(3), 816–824.PubMedCrossRefGoogle Scholar
  22. Little, D. M., Kraus, M. F., Joseph, J., Geary, E. K., Susmaras, T., Zhou, X. J., et al. (2010). Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology, 74(7), 558–564. doi: 10.1212/WNL.0b013e3181cff5d5.PubMedCrossRefGoogle Scholar
  23. Lo, C., Shifteh, K., Gold, T., Bello, J. A., & Lipton, M. L. (2009). Diffusion tensor imaging abnormalities in patients with mild traumatic brain injury and neurocognitive impairment. Journal of Computer Assisted Tomography, 33(2), 293–297.PubMedCrossRefGoogle Scholar
  24. Mac Donald, C., Dikranian, K., Bayly, P., Holtzman, D., & Brody, D. (2007a). Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury. Journal of Neuroscience, 27(44), 11869–11876.PubMedCrossRefGoogle Scholar
  25. Mac Donald, C., Dikranian, K., Song, S. K., Bayly, P. V., Holtzman, D. M., & Brody, D. L. (2007b). Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Experimental Neurology, 205(1), 116–131.CrossRefGoogle Scholar
  26. Mac Donald, C. L., Dikranian, K., Bayly, P., Holtzman, D., & Brody, D. (2007c). Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury. Journal of Neuroscience, 27(44), 11869–11876. doi: 10.1523/jneurosci.3647-07.2007.CrossRefGoogle Scholar
  27. Mayer, A. R., Ling, J., Mannell, M. V., Gasparovic, C., Phillips, J. P., Doezema, D., et al. (2010). A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology, 74(8), 643–650. doi: 10.1212/WNL.0b013e3181d0ccdd.PubMedCrossRefGoogle Scholar
  28. McArthur, D., Chute, D. J., & Villablanca, J. P. (2004). Moderate and severe traumatic brain injury: epidemiologic, imaging and neuropathologic perspectives. Brain Pathology, 14(2), 185–194.PubMedCrossRefGoogle Scholar
  29. Meythaler, J. M., Peduzzi, J. D., Eleftheriou, E., & Novack, T. A. (2001). Current concepts: diffuse axonal injury-associated traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 82(10), 1461–1471.PubMedCrossRefGoogle Scholar
  30. Miles, L., Grossman, R. I., Johnson, G., Babb, J. S., Diller, L., & Inglese, M. (2008). Short-term DTI predictors of cognitive dysfunction in mild traumatic brain injury. Brain Injury, 22(2), 115–122.PubMedCrossRefGoogle Scholar
  31. Muller, H. P., Unrath, A., Riecker, A., Pinkhardt, E. H., Ludolph, A. C., & Kassubek, J. (2009). Intersubject variability in the analysis of diffusion tensor images at the group level: fractional anisotropy mapping and fiber tracking techniques. Magnetic Resonance Imaging, 27(3), 324–334. doi: 10.1016/j.mri.2008.07.003.PubMedCrossRefGoogle Scholar
  32. Niogi, S. N., Mukherjee, P., Ghajar, J., Johnson, C., Kolster, R. A., Sarkar, R., et al. (2008a). Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR. American Journal of Neuroradiology, 29(5), 967–973. doi: 10.3174/ajnr.A0970.PubMedCrossRefGoogle Scholar
  33. Niogi, S. N., Mukherjee, P., Ghajar, J., Johnson, C. E., Kolster, R., Lee, H., et al. (2008b). Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain, 131(Pt 12), 3209–3221. doi: 10.1093/brain/awn247.PubMedCrossRefGoogle Scholar
  34. Oishi, K., Faria, A. V., & Mori, S. (2010). JHU-MNI-ss Atlas.Google Scholar
  35. Pettus, E., Christman, C. W., Giebel, M. L., & Povlishock, J. T. (1994). Traumatically induced altered membrane permeability: its relationship to traumatically induced reactive axonal change. Journal of Neurotrauma, 11(5), 507–522.PubMedCrossRefGoogle Scholar
  36. Poupon, C., Clark, C. A., Frouin, V., Regis, J., Bloch, I., Le Bihan, D., et al. (2000). Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. NeuroImage, 12(2), 184–195. doi: 10.1006/nimg.2000.0607.PubMedCrossRefGoogle Scholar
  37. Povlishock, J. (1986). Traumatically induced axonal damage without concomitant change in focally related neuronal somata and dendrites. Acta Neuropathologica, 70(1), 53–59.PubMedCrossRefGoogle Scholar
  38. Povlishock, J. (1992). Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathology, 2(1), 1–12.PubMedGoogle Scholar
  39. Povlishock, J., & Katz, D. I. (2005). Update of neuropathology and neurological recovery after traumatic brain injury. The Journal of Head Trauma Rehabilitation, 20(1), 76–94.PubMedCrossRefGoogle Scholar
  40. Povlishock, J. T., Becker, D. P., Cheng, C. L., & Vaughan, G. W. (1983). Axonal change in minor head injury. Journal of Neuropathology and Experimental Neurology, 42(3), 225–242.PubMedCrossRefGoogle Scholar
  41. Rosenbaum, S. B. & Lipton, M. L. (2012). Embracing chaos: the scope and importance of clinical and pathological heterogeneity in mTBI. Brain Imaging and Behavior. This special issue.Google Scholar
  42. Rubovitch, V., Ten-Bosch, M., Zohar, O., Harrison, C. R., Tempel-Brami, C., Stein, E., et al. (2011). A mouse model of blast-induced mild traumatic brain injury. Experimental Neurology, 232(2), 280–289. doi: 10.1016/j.expneurol.2011.09.018.PubMedCrossRefGoogle Scholar
  43. Rutgers, D. R., Toulgoat, F., Cazejust, J., Fillard, P., Lasjaunias, P., & Ducreux, D. (2008). White matter abnormalities in mild traumatic brain injury: a diffusion tensor imaging study. [Proceedings Paper]. American Journal of Neuroradiology, 29(3), 514–519. doi: 10.3174/ajnr.A0856.PubMedCrossRefGoogle Scholar
  44. Scholz, J., Klein, M. C., Behrens, T. E., & Johansen-Berg, H. (2009). Training induces changes in white-matter architecture. [Research Support, Non-U.S. Gov’t]. Nature Neuroscience, 12(11), 1370–1371. 10.1038/nn.2412.PubMedCrossRefGoogle Scholar
  45. Sharp, D. J., & Ham, T. E. (2011). Investigating white matter injury after mild traumatic brain injury. Current Opinion in Neurology, 24(6), 558–563. doi: 10.1097/WCO.0b013e32834cd523.PubMedCrossRefGoogle Scholar
  46. Shenton, M. E., Hamoda, H. M., Schneiderman, J. S., Bouix, S., Pasternak, O., Rathi, Y., et al. (2012). A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging and Behavior. This special issue.Google Scholar
  47. Smith, S., Jenkinson, M., Woolrich, M. W., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(suppl 1), S208–S219.PubMedCrossRefGoogle Scholar
  48. Smith, S., Johansen-Berg, H., Jenkinson, M., et al. (2007). Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. Nature Protocols, 2(3), 499–503.PubMedCrossRefGoogle Scholar
  49. Song, S., Sun, S. W., Ju, W. K., Lin, S. J., Cross, A. H., & Neufeld, A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage, 20(3), 1714–1722.PubMedCrossRefGoogle Scholar
  50. Spain, A., Daumas, S., Lifshitz, J., Rhodes, J., Andrews, P. J., Horsburgh, K., et al. (2010). Mild fluid percussion injury in mice produces evolving selective axonal pathology and cognitive deficits relevant to human brain injury. Journal of Neurotrauma, 27(8), 1429–1438. doi: 10.1089/neu.2010.1288.PubMedCrossRefGoogle Scholar
  51. Wang, S., Wu, E. X., Qiu, D., Leung, L. H., Lau, H. F., & Khong, P. L. (2009). Longitudinal diffusion tensor magnetic resonance imaging study of radiation-induced white matter damage in a rat model. Cancer Research, 69(3), 1190–1198.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Michael L. Lipton
    • 1
    • 2
    • 3
    • 4
    • 8
    Email author
  • Namhee Kim
    • 1
    • 2
  • Young K. Park
    • 1
    • 9
  • Miriam B. Hulkower
    • 1
  • Tova M. Gardin
    • 1
    • 8
  • Keivan Shifteh
    • 8
  • Mimi Kim
    • 5
  • Molly E. Zimmerman
    • 6
  • Richard B. Lipton
    • 5
    • 6
  • Craig A. Branch
    • 1
    • 2
    • 7
  1. 1.The Gruss Magnetic Resonance Research CenterAlbert Einstein College of Medicine of Yeshiva UniversityBronxUSA
  2. 2.Department of RadiologyAlbert Einstein College of Medicine of Yeshiva UniversityBronxUSA
  3. 3.Department of Psychiatry & Behavioral SciencesAlbert Einstein College of Medicine of Yeshiva UniversityBronxUSA
  4. 4.The Dominick P Purpura Department of NeuroscienceAlbert Einstein College of Medicine of Yeshiva UniversityBronxUSA
  5. 5.Department of Epidemiology and Population HealthAlbert Einstein College of Medicine of Yeshiva UniversityBronxUSA
  6. 6.The Saul R. Korey Department of NeurologyAlbert Einstein College of Medicine of Yeshiva UniversityBronxUSA
  7. 7.Department of Physiology & BiophysicsAlbert Einstein College of Medicine of Yeshiva UniversityBronxUSA
  8. 8.The Department of RadiologyMontefiore Medical CenterBronxUSA
  9. 9.Hofstra North Shore-LIJ School of Medicine at Hofstra University, North Shore-Long Island Jewish Health SystemManhassetUSA

Personalised recommendations