Brain Imaging and Behavior

, Volume 6, Issue 2, pp 193–207

Functional MRI of mild traumatic brain injury (mTBI): progress and perspectives from the first decade of studies

  • Brenna C. McDonald
  • Andrew J. Saykin
  • Thomas W. McAllister
mTBI SPECIAL ISSUE

Abstract

Mild traumatic brain injury (mTBI) represents the great majority of traumatic brain injuries, and is a common medical problem affecting cognitive and vocational functioning as well as quality of life in some individuals. Functional MRI (fMRI) is an important research method for investigating the neuroanatomic substrates of cognitive disorders and their treatment. Surprisingly, however, relatively little research has utilized fMRI to examine alterations in brain functioning after mTBI. This article provides a critical overview of the published fMRI research on mTBI to date. These topics include examination of frontal lobe/executive functions such as working memory, as well as episodic memory and resting state/functional connectivity. mTBI has also been investigated in military populations where studies have focused on effects of blast injury and comorbid conditions such as post-traumatic stress disorder and major depressive disorder. Finally, we address fMRI evaluations of response to behavioral or pharmacological challenges and interventions targeting cognitive and behavioral sequelae of mTBI. The review concludes with identification and discussion of gaps in current knowledge and future directions for fMRI studies of mTBI. The authors conclude that fMRI in combination with related methods can be expected to play an increasing role in research related to studies of pathophysiological mechanisms of the sequelae of mTBI as well as in diagnosis and treatment monitoring.

Keywords

Episodic memory Frontal lobes Functional connectivity Functional MRI Mild traumatic brain injury Working memory 

References

  1. Arnsten, A. F. T. (2011). Catecholamine influences on dorsolateral prefrontal cortical networks. Biological Psychiatry, 69(12), e89–e99.PubMedCrossRefGoogle Scholar
  2. Arnsten, A. F. T., Steere, J. C., Jentsch, D. J., & Li, B. M. (1998). Noradrenergic influences on prefrontal cortical cognitive function: opposing actions at postjunctional alpha 1 versus alpha 2-adrenergic receptors. Advances in Pharmacology (New York), 42, 764–767.Google Scholar
  3. Baugh, C. M., Stamm, J. M., Riley, D. O., Gavett, B. E., Shenton, M. E., Lin, A. P., et al. (2012). Chronic traumatic encephalopathy: neurodegeneration following repetitive concussive and subconcussive brain trauma. Brain Imaging and Behavior, this special issue.Google Scholar
  4. Belanger, H. G., Curtiss, G., Demery, J. A., Lebowitz, B. K., & Vanderploeg, R. D. (2005). Factors moderating neuropsychological outcomes following mild traumatic brain injury: a meta-analysis. Journal of the International Neuropsychological Society, 11(3), 215–227.PubMedCrossRefGoogle Scholar
  5. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.PubMedCrossRefGoogle Scholar
  6. Breedlove, E. L., Robinson, M., Talavage, T. M., Morigaki, K. E., Yoruk, U., O'Keefe, K., et al. (2012). Biomechanical correlates of symptomatic and asymptomatic neurophysiological impairment in high school football. Journal of Biomechanics, online ahead of print.Google Scholar
  7. Cassidy, J. D., Carroll, L. J., Peloso, P. M., Borg, J., von Holst, H., Holm, L., et al. (2004). Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. Journal of Rehabilitation Medicine, 43(Suppl), 28–60.PubMedCrossRefGoogle Scholar
  8. Chen, J.-K., Johnston, K. M., Frey, S., Petrides, M., Worsley, K., & Ptito, A. (2004). Functional abnormalities in symptomatic concussed athletes: an fMRI study. NeuroImage, 22(1), 68–82.PubMedCrossRefGoogle Scholar
  9. Chen, J.-K., Johnston, K. M., Collie, A., McCrory, P., & Ptito, A. (2007). A validation of the post concussion symptom scale in the assessment of complex concussion using cognitive testing and functional MRI. Journal of Neurology, Neurosurgery & Psychiatry, 78(11), 1231–1238.CrossRefGoogle Scholar
  10. Chen, J.-K., Johnston, K. M., Petrides, M., & Ptito, A. (2008a). Neural substrates of symptoms of depression following concussion in male athletes with persisting postconcussion symptoms. Archives of General Psychiatry, 65(1), 81–89.PubMedCrossRefGoogle Scholar
  11. Chen, J.-K., Johnston, K. M., Petrides, M., & Ptito, A. (2008b). Recovery from mild head injury in sports: evidence from serial functional magnetic resonance imaging studies in male athletes. Clinical Journal of Sport Medicine, 18(3), 241–247.PubMedCrossRefGoogle Scholar
  12. Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews Neuroscience, 12(1), 43–56.PubMedCrossRefGoogle Scholar
  13. Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., Straub, R. E., et al. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98(12), 6917–6922.PubMedCrossRefGoogle Scholar
  14. Gamo, N. J., & Arnsten, A. F. T. (2011). Molecular modulation of prefrontal cortex: rational development of treatments for psychiatric disorders. Behavioral Neuroscience, 125(3), 282–296.PubMedCrossRefGoogle Scholar
  15. Gosselin, N., Bottari, C., Chen, J.-K., Petrides, M., Tinawi, S., de Guise, E., et al. (2011). Electrophysiology and functional MRI in post-acute mild traumatic brain injury. Journal of Neurotrauma, 28(3), 329–341.PubMedCrossRefGoogle Scholar
  16. Jantzen, K. J., Anderson, B., Steinberg, F. L., & Kelso, J. A. S. (2004). A prospective functional MR imaging study of mild traumatic brain injury in college football players. AJNR. American Journal of Neuroradiology, 25(5), 738–745.PubMedGoogle Scholar
  17. Johnson, B., Zhang, K., Gay, M., Horovitz, S., Hallett, M., Sebastianelli, W., et al. (2012). Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study. NeuroImage, 59(1), 511–518.PubMedCrossRefGoogle Scholar
  18. Kay, T., Harrington, D. E., Adams, R., Anderson, T., Berrol, S., Cicerone, K., et al. (1993). Definition of mild traumatic brain injury. The Journal of Head Trauma Rehabilitation, 8(3), 86–87.CrossRefGoogle Scholar
  19. Krivitzky, L. S., Roebuck-Spencer, T. M., Roth, R. M., Blackstone, K., Johnson, C. P., & Gioia, G. (2011). Functional magnetic resonance imaging of working memory and response inhibition in children with mild traumatic brain injury. Journal of the International Neuropsychological Society, 17(6), 1143–1152.PubMedCrossRefGoogle Scholar
  20. Laatsch, L. K., Thulborn, K. R., Krisky, C. M., Shobat, D. M., & Sweeney, J. A. (2004). Investigating the neurobiological basis of cognitive rehabilitation therapy with fMRI. Brain Injury, 18(10), 957–974.PubMedCrossRefGoogle Scholar
  21. Lipsky, R. H., Sparling, M. B., Ryan, L. M., Xu, K., Salazar, A. M., Goldman, D., et al. (2002). Role of COMT Val158Met genotype in executive functioning following traumatic brain injury. Journal of Neuropsychiatry and Clinical Neurosciences.Google Scholar
  22. Lovell, M. R., Iverson, G. L., Collins, M. W., Podell, K., Johnston, K. M., Pardini, D., et al. (2006). Measurement of symptoms following sports-related concussion: reliability and normative data for the postconcussion scale. Applied Neuropsychology, 13, 166–174.PubMedCrossRefGoogle Scholar
  23. Lovell, M. R., Pardini, J. E., Welling, J., Collins, M. W., Bakal, J., Lazar, N., et al. (2007). Functional brain abnormalities are related to clinical recovery and time to return-to-play in athletes. Neurosurgery, 61(2), 352–359.PubMedCrossRefGoogle Scholar
  24. Matthews, S., Simmons, A., & Strigo, I. (2011). The effects of loss versus alteration of consciousness on inhibition-related brain activity among individuals with a history of blast-related concussion. Psychiatry Research, 191(1), 76–79.PubMedCrossRefGoogle Scholar
  25. Matthews, S. C., Strigo, I. A., Simmons, A. N., O'Connell, R. M., Reinhardt, L. E., & Moseley, S. A. (2011). A multimodal imaging study in U.S. veterans of Operations Iraqi and Enduring Freedom with and without major depression after blast-related concussion. NeuroImage, 54(Suppl 1), S69–75.PubMedCrossRefGoogle Scholar
  26. Mayer, A. R., Mannell, M. V., Ling, J., Elgie, R., Gasparovic, C., Phillips, J. P., et al. (2009). Auditory orienting and inhibition of return in mild traumatic brain injury: a FMRI study. Human Brain Mapping, 30(12), 4152–4166.PubMedCrossRefGoogle Scholar
  27. Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32(11), 1825–1835.PubMedCrossRefGoogle Scholar
  28. Mayer, A. R., Yang, Z., Yeo, R. A., Pena, A., Ling, J. M., Stippler, M., et al. (2012). A fMRI study of multimodal selective attention following mild traumatic brain injury. Brain Imaging and Behavior, this special issue.Google Scholar
  29. McAllister, T. W., Saykin, A. J., Flashman, L. A., Sparling, M. B., Johnson, S. C., Guerin, S. J., et al. (1999). Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology, 53(6), 1300–1308.PubMedCrossRefGoogle Scholar
  30. McAllister, T. W., Sparling, M. B., Flashman, L. A., Guerin, S. J., Ford, J. C., Mamourian, A. C., et al. (2001a). Reduction in episodic memory fMRI circuitry activation is related to traumatic brain injury severity. The Journal of Neuropsychiatry and Clinical Neurosciences, 13(1), 141.Google Scholar
  31. McAllister, T. W., Sparling, M. B., Flashman, L. A., Guerin, S. J., Mamourian, A. C., & Saykin, A. J. (2001b). Differential working memory load effects after mild traumatic brain injury. NeuroImage, 14(5), 1004–1012.PubMedCrossRefGoogle Scholar
  32. McAllister, T. W., Sparling, M. B., Flashman, L. A., McDonald, B., Wishart, H., & Saykin, A. J. (2002). Working memory activation patterns 1 month and 1 year after mild traumatic brain injury: a longitudinal fMRI study. The Journal of Neuropsychiatry and Clinical Neurosciences, 14(1), 116.Google Scholar
  33. McAllister, T. W., Flashman, L. A., Sparling, M. B., & Saykin, A. J. (2004). Working memory deficits after traumatic brain injury: catecholaminergic mechanisms and prospects for treatment – a review. Brain Injury, 18(4), 331–350.PubMedCrossRefGoogle Scholar
  34. McAllister, T. W., McDonald, B. C., Flashman, L. A., Rhodes, C. H., Shaw, P. K., Ferrell, R. B., et al. (2004). Differential effect of COMT allele status on frontal activation associated with a dopaminergic agonist. The Journal of Neuropsychiatry and Clinical Neurosciences, 16(2), 240.Google Scholar
  35. McAllister, T. W., Flashman, L. A., McDonald, B. C., & Saykin, A. J. (2006). Mechanisms of working memory dysfunction after mild and moderate TBI: evidence from functional MRI and neurogenetics. Journal of Neurotrauma, 23(10), 1450–1467.PubMedCrossRefGoogle Scholar
  36. McAllister, T. W., Flashman, L. A., McDonald, B. C., Ferrell, R. B., Tosteson, T. D., Yanofsky, N. N., et al. (2011). Dopaminergic challenge with bromocriptine 1 month after mild traumatic brain injury: altered working memory and BOLD response. The Journal of Neuropsychiatry and Clinical Neurosciences, 23(3), 277–286.PubMedCrossRefGoogle Scholar
  37. McAllister, T. W., McDonald, B. C., Flashman, L. A., Ferrell, R. B., Tosteson, T. D., Yanofsky, N. N., et al. (2011). Alpha-2 adrenergic challenge with guanfacine 1 month after mild traumatic brain injury: altered working memory and BOLD response. International Journal of Psychophysiology, 82(1), 107–114.PubMedCrossRefGoogle Scholar
  38. McCrea, M., Iverson, G. L., McAllister, T. W., Hammeke, T. A., Powell, M. R., Barr, W. B., et al. (2009). An integrated review of recovery after mild traumatic brain injury (mTBI): implications for clinical management. The Clinical Neuropsychologist, 23(8), 1368–1390.PubMedCrossRefGoogle Scholar
  39. McDonald, B. C., Flashman, L. A., & Saykin, A. J. (2002). Executive dysfunction following traumatic brain injury: neural substrates and treatment strategies. Neurorehabilitation, 17(4), 333–344.PubMedGoogle Scholar
  40. National Center for Injury Prevention and Control. (2003). Report to Congress on Mild Traumatic Brain Injury in the United States: Steps to Prevent a Serious Public Health Problem Atlanta. GA: Centers for Disease Control and Prevention.Google Scholar
  41. Pardini, J. E., Pardini, D. A., Becker, J. T., Dunfee, K. L., Eddy, W. F., Lovell, M. R., et al. (2010). Postconcussive symptoms are associated with compensatory cortical recruitment during a working memory task. Neurosurgery, 67(4), 1020–1027. discussion 1027–1028.PubMedCrossRefGoogle Scholar
  42. Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: a brief history of an evolving idea. NeuroImage, 37, 1083–1090.PubMedCrossRefGoogle Scholar
  43. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682.PubMedCrossRefGoogle Scholar
  44. Rosenbaum, S. B., & Lipton, M. L. (2012). Embracing chaos: the scope and importance of clinical and pathological heterogeneity in mTBI. Brain Imaging and Behavior, this special issue.Google Scholar
  45. Roy, M. J., Francis, J., Friedlander, J., Banks-Williams, L., Lande, R. G., Taylor, P., et al. (2010). Improvement in cerebral function with treatment of posttraumatic stress disorder. Annals of the New York Academy of Sciences, 1208, 142–149.PubMedCrossRefGoogle Scholar
  46. Rutland-Brown, W., Langlois, J. A., Thomas, K. E., & Xi, Y. L. (2006). Incidence of traumatic brain injury in the United States, 2003. The Journal of Head Trauma Rehabilitation, 21(6), 544–548.PubMedCrossRefGoogle Scholar
  47. Saykin, A. J., Johnson, S. C., Flashman, L. A., McAllister, T. W., Sparling, M. B., Darcey, T. M., et al. (1999). Functional differentiation of medial temporal and frontal regions involved in processing novel and familiar words: an fMRI study. Brain, 122(10), 1963–1971.PubMedCrossRefGoogle Scholar
  48. Scheibel, R. S., Newsome, M. R., Troyanskaya, M., Lin, X., Steinberg, J. L., Radaideh, M., et al. (2012). Altered brain activation in military personnel with one or more traumatic brain injuries following blast. Journal of the International Neuropsychological Society, 18(1), 89–100.PubMedCrossRefGoogle Scholar
  49. Slobounov, S. M., Zhang, K., Pennell, D., Ray, W., Johnson, B., & Sebastianelli, W. (2010). Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study. Experimental Brain Research, 202(2), 341–354.CrossRefGoogle Scholar
  50. Slobounov, S. M., Gay, M., Zhang, K., Johnson, B., Pennell, D., Sebastianelli, W., et al. (2011). Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. NeuroImage, 55(4), 1716–1727.PubMedCrossRefGoogle Scholar
  51. Slobounov, S. M., Gay, M., Johnson, B., & Zhang, K. (2012). Concussion in athletics: ongoing clinician and brain imaging research controversies. Brain Imaging and Behavior, this special issue.Google Scholar
  52. Smits, M., Dippel, D. W. J., Houston, G. C., Wielopolski, P. A., Koudstaal, P. J., Hunink, M. G. M., et al. (2009). Postconcussion syndrome after minor head injury: brain activation of working memory and attention. Human Brain Mapping, 30(9), 2789–2803.PubMedCrossRefGoogle Scholar
  53. Stevens, M. C., Lovejoy, D., Kim, J., Oakes, H., Kureshi, I., & Witt, S. T. (2012). Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging and Behavior, this special issue.Google Scholar
  54. Stulemeijer, M., Vos, P. E., van der Werf, S., van Dijk, G., Rijpkema, M., & Fernandez, G. (2010). How mild traumatic brain injury may affect declarative memory performance in the post-acute stage. Journal of Neurotrauma, 27(9), 1585–1595.PubMedCrossRefGoogle Scholar
  55. Talavage, T. M., Nauman, E., Breedlove, E. L., Yoruk, U., Dye, A. E., Morigaki, K., et al. (2010). Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. Journal of Neurotrauma, online ahead of print.Google Scholar
  56. Tang, L., Ge, Y., Sodickson, D. K., Miles, L., Zhou, Y., Reaume, J., et al. (2011). Thalamic resting-state functional networks: disruption in patients with mild traumatic brain injury. Radiology, 260(3), 831–840.PubMedCrossRefGoogle Scholar
  57. Witt, S. T., Lovejoy, D. W., Pearlson, G. D., & Stevens, M. C. (2010). Decreased prefrontal cortex activity in mild traumatic brain injury during performance of an auditory oddball task. Brain Imaging and Behavior, 4(3–4), 232–247.PubMedCrossRefGoogle Scholar
  58. Zhang, K., Johnson, B., Pennell, D., Ray, W., Sebastianelli, W., & Slobounov, S. (2010). Are functional deficits in concussed individuals consistent with white matter structural alterations: combined FMRI & DTI study. Experimental Brain Research, 204(1), 57–70.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Brenna C. McDonald
    • 1
    • 2
  • Andrew J. Saykin
    • 1
    • 2
  • Thomas W. McAllister
    • 2
  1. 1.IU Center for Neuroimaging, Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisUSA
  2. 2.Section of Neuropsychiatry, Department of PsychiatryDartmouth Medical SchoolLebanonUSA

Personalised recommendations