Brain Imaging and Behavior

, Volume 6, Issue 2, pp 224–243 | Cite as

Concussion in athletics: ongoing clinical and brain imaging research controversies

  • Semyon Slobounov
  • Michael Gay
  • Brian Johnson
  • Kai Zhang


Concussion, the most common form of traumatic brain injury, proves to be increasingly complex and not mild in nature as its synonymous term mild traumatic brain injury (mTBI) would imply. Despite the increasing occurrence and prevalence of mTBI there is no universally accepted definition and conventional brain imaging techniques lack the sensitivity to detect subtle changes it causes. Moreover, clinical management of sports induced mild traumatic brain injury has not changed much over the past decade. Advances in neuroimaging that include electroencephalography (EEG), functional magnetic resonance imaging (fMRI), resting-state functional connectivity, diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) offer promise in aiding research into understanding the complexities and nuances of mTBI which may ultimately influence clinical management of the condition. In this paper the authors review the major findings from these advanced neuroimaging methods along with current controversy within this field of research. As mTBI is frequently associated with youth and sports injury this review focuses on sports‐related mTBI in the younger population.


Mild TBI Neuroimaging Clinical outcome 


  1. Alves, W. M., Rimel, R. W., & Nelson, W. E. (1987). University-of-virginia prospective-study of football-induced minor head-injury—status-report. Clinics in Sports Medicine, 6, 211–218.PubMedGoogle Scholar
  2. Anderson, T., Heitger, M., & Macleod, A. D. (2006). Concussion and mild head injury. Practical Neurology, 6, 342–357.CrossRefGoogle Scholar
  3. Arciniegas, D. B. (2011). Clinical electrophysiologic assessments and mild traumatic brain injury: state-of-the-science and implications for clinical practice. International Journal of Psychophysiology, 82, 41–52.PubMedCrossRefGoogle Scholar
  4. Asato, M. R. (2010). White matter development in adolescence: A DTI study. New York, NY: Cerebral cortex (1991) 20:2122–2131.Google Scholar
  5. Aubry, M., Cantu, R., Dvorak, J., Graf-Baumann, T., Johnston, K., Kelly, J., Lovell, M., McCrory, P., Meeuwisse, W., & Schamasch, P. (2002). Summary and agreement statement of the first international conference on concussion in sport, Vienna 2001. Recommendations for the improvement of safety and health of athletes who may suffer concussive injuries. British Journal of Sports Medicine, 36, 6–10.PubMedCrossRefGoogle Scholar
  6. Audoin, B., Ibarrola, D., Ranjeva, J. P., Confort-Gouny, S., Malikova, I., Ali-Cherif, A., Pelletier, J., & Cozzone, P. (2003). Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of MS. Human Brain Mapping, 20, 51–58.PubMedCrossRefGoogle Scholar
  7. Babikian, T. (2010). Metabolic levels in the corpus callosum and their structural and behavioral correlates after moderate to severe pediatric TBI. Journal of Neurotrauma, 27, 473–481.PubMedCrossRefGoogle Scholar
  8. Barkhoudarian, G., Hovda, D. A., Giza, C. C. (2011). The molecular pathophysiology of concussive brain injury. Clinics in Sports Medicine, 30, 33–48, vii–iii.Google Scholar
  9. Barnes, S. M., Walter, K. H., & Chard, K. M. (2012). Does a history of mild traumatic brain injury increase suicide risk in veterans with PTSD? Rehabilitation Psychology, 57, 18–26.PubMedCrossRefGoogle Scholar
  10. Barr, W. B., Prichep, L. S., Chabot, R., Powell, M. R., & McCrea, M. (2012). Measuring brain electrical activity to track recovery from sport-related concussion. Brain Injury, 26, 58–66.PubMedCrossRefGoogle Scholar
  11. Barth. J., Alves, W., Ryan, T., Macciocchi, S., Rimel, R., Jane, J., Nelson, W. (1989). Chapter 17: Mild head injury in sport: Neuropsychological sequelae and recovery of function. In: H. Levin, H. Eisenberg and A. Benton (Eds.), Mild head injury. Oxford Press.Google Scholar
  12. Barwick, F., Arnett, P., & Slobounov, S. (2012). EEG correlates of fatigue during administration of a neuropsychological test battery. Clinical Neurophysiology, 123, 278–284.PubMedCrossRefGoogle Scholar
  13. Bazarian, J. J., Veenema, T., Brayer, A. F., & Lee, E. (2001). Knowledge of concussion guidelines among practitioners caring for children. Clinical Pediatrics, 40, 207–212.PubMedCrossRefGoogle Scholar
  14. Bazarian, J. J., Zhu, T., Blyth, B., Borrino, A., & Zhong, J. (2012). Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion. Magnetism Resonance Imaging, 30, 171–180.CrossRefGoogle Scholar
  15. Bazarian, J. J., Zhong, J., Blyth, B., Zhu, T., Kavcic, V., & Peterson, D. (2007). Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: a pilot study. Journal of Neurotrauma, 24, 1447–1459.PubMedCrossRefGoogle Scholar
  16. Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360, 1001–1013.PubMedCrossRefGoogle Scholar
  17. Belanger, H. G. (2007). Recent neuroimaging techniques in mild traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 19, 5–20.PubMedCrossRefGoogle Scholar
  18. Belanger, H. G., Spiegel, E., & Vanderploeg, R. D. (2010). Neuropsychological performance following a history of multiple self-reported concussions: a meta-analysis. Journal of the International Neuropsychological Society, 16, 262–267.PubMedCrossRefGoogle Scholar
  19. Bigler, E. D., & Maxwell, W. L. (2012). Neuropathology of mild traumatic brain injury: Relationship to neuroimaging findings. Brain Imaging Behaviour. Google Scholar
  20. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34, 537–541.PubMedCrossRefGoogle Scholar
  21. Blaylock, R. L., & Maroon, J. (2011). Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy-a unifying hypothesis. Surgical Neurology International, 2, 107.PubMedCrossRefGoogle Scholar
  22. Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 49–62.PubMedCrossRefGoogle Scholar
  23. Broglio, S. P., Pontifex, M. B., O’Connor, P., & Hillman, C. H. (2009). The Persistent Effects of Concussion on Neuroelectric Indices of Attention. Journal of Neurotrauma, 26, 1463–1470.PubMedCrossRefGoogle Scholar
  24. Browne, K. D., Chen, X. H., Meaney, D. F., & Smith, D. H. (2011). Mild traumatic brain injury and diffuse axonal injury in swine. Journal of Neurotrauma, 28, 1747–1755.PubMedCrossRefGoogle Scholar
  25. Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J., & Sonuga-Barke, E. J. (2009). Default-mode brain dysfunction in mental disorders: a systematic review. Neuroscience and Biobehavioral Reviews, 33, 279–296.PubMedCrossRefGoogle Scholar
  26. Bruce, J. M., & Echemendia, R. J. (2009). History of multiple self-reported concussions is not associated with reduced cognitive abilities. Neurosurgery, 64, 100–106. discussion 106.PubMedCrossRefGoogle Scholar
  27. Bryant, R. A. (1999). Postconcussive symptoms and posttraumatic stress disorder after mild traumatic brain injury. The Journal of Nervous and Mental Disease, 187, 302.PubMedCrossRefGoogle Scholar
  28. Cantu, R. C., Aubry, M., Dvorak, J., Graf-Baumann, T., Johnston, K., Kelly, J., Lovell, M., McCrory, P., Meeuwisse, W., Schamasch, P., Kevin, M., Bruce, S. L., Ferrara, M. S., Kelly, J. P., McCrea, M., Putukian, M., & McLeod, T. C. (2006). Overview of concussion consensus statements since 2000. Neurosurgical Focus, 21, E3.PubMedCrossRefGoogle Scholar
  29. Cao, C., & Slobounov, S. (2010). Alteration of cortical functional connectivity as a result of traumatic brain injury revealed by graph theory, ICA, and sLORETA analyses of EEG signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18, 11–19.PubMedCrossRefGoogle Scholar
  30. Cao, C., & Slobounov, S. (2011). Application of a novel measure of EEG non-stationarity as ‘Shannon- entropy of the peak frequency shifting’ for detecting residual abnormalities in concussed individuals. Clinical Neurophysiology, 122, 1314–1321.PubMedCrossRefGoogle Scholar
  31. Cao, C., Tutwiler, R. L., & Slobounov, S. (2008). Automatic classification of athletes with residual functional deficits following concussion by means of EEG signal using support vector machine. IEEE transactions on neural systems and rehabilitation engineering, 16, 327–335.PubMedCrossRefGoogle Scholar
  32. CAoSMC C. (2000). CASM Guidelines for assessment and management of sport-related concussion. Clinical Journal of Sports Medicine, 10, 209–211.CrossRefGoogle Scholar
  33. Cecil, K. M. (1998). Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. Journal of Neurosurgery, 88, 795–801.PubMedCrossRefGoogle Scholar
  34. Chang, L., Tomasi, D., Yakupov, R., Lozar, C., Arnold, S., Caparelli, E., & Ernst, T. (2004). Adaptation of the attention network in human immunodeficiency virus brain injury. Annals of Neurology, 56, 259–272.PubMedCrossRefGoogle Scholar
  35. Chason, J. L., Hardy, W. G., Webster, J. E., & Gurdjian, E. S. (1958). Alterations in cell structure of the brain associated with experimental concussion. Journal of Neurosurgery, 15, 135–139.PubMedCrossRefGoogle Scholar
  36. Chen, J. K., Johnston, K. M., Collie, A., McCrory, P., & Ptito, A. (2007). A validation of the post concussion symptom scale in the assessment of complex concussion using cognitive testing and functional MRI. Journal of Neurology, Neurosurgery, and Psychiatry, 78, 1231–1238.PubMedCrossRefGoogle Scholar
  37. Chen, J. K., Johnston, K. M., Frey, S., Petrides, M., Worsley, K., & Ptito, A. (2004). Functional abnormalities in symptomatic concussed athletes: an fMRI study. NeuroImage, 22, 68–82.PubMedCrossRefGoogle Scholar
  38. Chen, J. K., Johnston, K. M., Petrides, M., & Ptito, A. (2008). Neural substrates of symptoms of depression following concussion in male athletes with persisting postconcussion symptoms. Archives of General Psychiatry, 65, 81–89.PubMedCrossRefGoogle Scholar
  39. Chiaravalloti, N., Hillary, F., Ricker, J., Christodoulou, C., Kalnin, A., Liu, W. C., Steffener, J., & DeLuca, J. (2005). Cerebral activation patterns during working memory performance in multiple sclerosis using FMRI. ournal of Clinical and Experimental Neuropsychology, 27, 33–54.CrossRefGoogle Scholar
  40. Chrisman, S. P., Schiff, M. A., & Rivara, F. P. (2011). Physician concussion knowledge and the effect of mailing the CDC’s “Heads up” toolkit. Clinical Pediatrics, 50, 1031–1039.PubMedCrossRefGoogle Scholar
  41. Chu, Z., Wilde, E. A., Hunter, J. V., McCauley, S. R., Bigler, E. D., Troyanskaya, M., Yallampalli, R., Chia, J. M., & Levin, H. S. (2009). Voxel-based analysis of diffusion tensor imaging in mild traumatic brain injury in adolescents. American Journal of Neuroradiology, 31, 340–346.PubMedCrossRefGoogle Scholar
  42. Courtney, S. (2004). Attention and cognitive control as emergent properties of information representation in working memory. Cognitive, Affective, & Behavioral Neuroscience, 4, 501–516.CrossRefGoogle Scholar
  43. Covassin, T., Elbin, R., Kontos, A., & Larson, E. (2010). Investigating baseline neurocognitive performance between male and female athletes with a history of multiple concussion. Journal of Neurology, Neurosurgery & Psychiatry, 81, 597–601.CrossRefGoogle Scholar
  44. Creed, J. A., DiLeonardi, A. M., Fox, D. P., Tessler, A. R., & Raghupathi, R. (2011). Concussive brain trauma in the mouse results in acute cognitive deficits and sustained impairment of axonal function. Journal of Neurotrauma, 28, 547–563.PubMedCrossRefGoogle Scholar
  45. Cubon, V. A. (2011). A diffusion tensor imaging study on the white matter skeleton in individuals with sports-related concussion. Journal of Neurotrauma, 28, 189–201.PubMedCrossRefGoogle Scholar
  46. Cubon, V. A., Putukian, M., Boyer, C., & Dettwiler, A. (2011). A diffusion tensor imaging study on the white matter skeleton in individuals with sports-related concussion. Journal of Neurotrauma, 28, 189–201.PubMedCrossRefGoogle Scholar
  47. Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103, 13848–13853.PubMedCrossRefGoogle Scholar
  48. Daniel, J. C., Olesniewicz, M. H., Reeves, D. L., Tam, D., Bleiberg, J., Thatcher, R., & Salazar, A. (1999). Repeated measures of cognitive processing efficiency in adolescent athletes: implications for monitoring recovery from concussion. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 12, 167–169.PubMedGoogle Scholar
  49. Dasilva, F. L. (1991). Neural mechanisms underlying brain waves—from neural membranes to networks. Electroencephalography and Clinical Neurophysiology, 79, 81–93.CrossRefGoogle Scholar
  50. Davis, G. A., Iverson, G. L., Guskiewicz, K. M., Ptito, A., & Johnston, K. M. (2009). Contributions of neuroimaging, balance testing, electrophysiology and blood markers to the assessment of sport-related concussion. British Journal of Sports Medicine, 43, I36–I45.PubMedCrossRefGoogle Scholar
  51. de la Plata, C. D. M., Garces, J., Kojori, E. S., Grinnan, J., Krishnan, K., Pidikiti, R., Spence, J., Devous, M. D., Moore, C., McColl, R., Madden, C., & Diaz-Arrastia, R. (2011). Deficits in functional connectivity of hippocampal and frontal lobe circuits after traumatic axonal injury. Archives of Neurology, 68, 74–84.CrossRefGoogle Scholar
  52. De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M., & Smith, S. M. (2006). fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage, 29, 1359–1367.PubMedCrossRefGoogle Scholar
  53. Duff, J. (2004). The usefulness of quantitative EEG (QEEG) and neurotherapy in the assessment and treatment of post-concussion syndrome. Clinical EEG and Neuroscience, 35, 198–209.PubMedGoogle Scholar
  54. Faas, F. H., & Ommaya, A. K. (1968). Brain tissue electrolytes and water content in experimental concussion in the monkey. Journal of Neurosurgery, 28, 137–144.PubMedCrossRefGoogle Scholar
  55. Flamm, E. S., Ommaya, A. K., Coe, J., Krueger, T. P., & Faas, F. H. (1966). Cardiovascular effects of experimental head injury in the monkey. Surgical Forum, 17, 414–416.PubMedGoogle Scholar
  56. Forn, C., Barros-Loscertales, A., Escudero, J., Belloch, V., Campos, S., Parcet, M. A., & Avila, C. (2006). Cortical reorganization during PASAT task in MS patients with preserved working memory functions. NeuroImage, 31, 686–691.PubMedCrossRefGoogle Scholar
  57. Fox, M. D., & Greicius, M. (2010). Clinical applications of resting state functional connectivity. Frontiers in Systems Neuroscience, 4, 19.PubMedGoogle Scholar
  58. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8, 700–711.PubMedCrossRefGoogle Scholar
  59. Gardner, A., Shores, E. A., & Batchelor, J. (2010). Reduced processing speed in rugby union players reporting three or more previous concussions. Archives of Clinical Neuropsychology, 25, 174–181.PubMedCrossRefGoogle Scholar
  60. Gasparovic, C., Yeo, R., Mannell, M., Ling, J., Elgie, R., Phillips, J., Doezema, D., Mayer, A. (2009). Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: A 1H–magnetic resonance spectroscopy study. Journal of Neurotrauma, 110306202455053.Google Scholar
  61. Gavett, B., Stern, R., Cantu, R., Nowinski, C., & McKee, A. (2010). Mild traumatic brain injury: a risk factor for neurodegeneration. Alzheimer’s Research & Therapy, 2, 1–3.CrossRefGoogle Scholar
  62. Geets, W., & Louette, N. (1985). Early EEG in 300 cerebral concussions. Revue d’Électroencéphalographie et de Neurophysiologie Clinique, 14, 333–338.PubMedCrossRefGoogle Scholar
  63. Giza, C. C., & Hovda, D. A. (2001). The neurometabolic cascade of concussion. Journal of Athletic Training, 36, 228–235.PubMedGoogle Scholar
  64. Glaser, M. A., & Sjaardema, H. (1940). The value of the electroencephalograph in cranio-cerebral injuries. West Surgery, 48, 6989–6996.Google Scholar
  65. Goetz, P., Blamire, A., Rajagopalan, B., Cadoux-Hudson, T., Young, D., & Styles, P. (2004). Increase in apparent diffusion coefficient in normal appearing white matter following human traumatic brain injury correlates with injury severity. Journal of Neurotrauma, 21, 645–654.PubMedCrossRefGoogle Scholar
  66. Gosselin, N., Theriault, M., Leclerc, S., Montplaisir, J., & Lassonde, M. (2006). Neurophysiological anomalies in symptomatic and asymptomatic concussed athletes. Neurosurgery, 58, 1151–1160.PubMedCrossRefGoogle Scholar
  67. Govind, V. (2010). Whole-brain proton MR spectroscopic imaging of mild-to-moderate traumatic brain injury and correlation with neuropsychological deficits. Journal of Neurotrauma, 27, 483–496.PubMedCrossRefGoogle Scholar
  68. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 253–258.PubMedCrossRefGoogle Scholar
  69. Grundl, P. D., Biagas, K. V., Kochanek, P. M., Schiding, J. K., Barmada, M. A., & Nemoto, E. M. (1994). Early cerebrovascular response to head injury in immature and mature rats. Journal of Neurotrauma, 11, 135–148.PubMedCrossRefGoogle Scholar
  70. Harch, P. G., Andrews, S. R., Fogarty, E. F., Amen, D., Pezzullo, J. C., Lucarini, J., Aubrey, C., Taylor, D. V., Staab, P. K., & Van Meter, K. W. (2012). A phase I study of low-pressure hyperbaric oxygen therapy for blast-induced post-concussion syndrome and post-traumatic stress disorder. Journal of Neurotrauma, 29, 168–185.PubMedCrossRefGoogle Scholar
  71. Helgeson, S. R. (2011). Identifying brain injury in state juvenile justice, corrections, and homeless populations. Brain Injury Professional, 7.Google Scholar
  72. Henry, L. C., Tremblay, J., Tremblay, S., Lepore, N., Theoret, H., Ellemberg, D., & Lassonde, M. (2011). Acute and chronic changes in diffusivity measures after sports concussion. Journal of Neurotrauma, 110824121127008.Google Scholar
  73. Henry, L. C., Tremblay, S., Boulanger, Y., Ellemberg, D., & Lassonde, M. (2010). Neurometabolic changes in the acute phase after sports concussions correlate with symptom severity. Journal of Neurotrauma, 27, 65–76.PubMedCrossRefGoogle Scholar
  74. Hillary, F. G. (2008). Neuroimaging of working memory dysfunction and the dilemma with brain reorganization hypotheses. Journal of the International Neuropsychological Society: JINS, 14, 526–534.PubMedCrossRefGoogle Scholar
  75. Hillary, F. G., Genova, H. M., Medaglia, J. D., Fitzpatrick, N. M., Chiou, K. S., Wardecker, B. M., Franklin, R. G., Jr., Wang, J., & DeLuca, J. (2010). The nature of processing speed deficits in traumatic brain injury: is less brain more? Brain Imaging and Behavior, 4, 141–154.PubMedCrossRefGoogle Scholar
  76. Hillary, F. G., Schultheis, M. T., Challis, B. H., Millis, S. R., Carnevale, G. J., Galshi, T., & DeLuca, J. (2003). Spacing of repetitions improves learning and memory after moderate and severe TBI. Journal of Clinical and Experimental Neuropsychology, 25, 49–58.PubMedCrossRefGoogle Scholar
  77. Hillary, F. G., Steffener, J., Biswal, B. B., Lange, G., DeLuca, J., & Ashburner, J. (2002). Functional magnetic resonance imaging technology and traumatic brain injury rehabilitation: guidelines for methodological and conceptual pitfalls. The Journal of Head Trauma Rehabilitation, 17, 411–430.PubMedCrossRefGoogle Scholar
  78. Hoge, C. W., McGurk, D., Thomas, J. L., Cox, A. L., Engel, C. C., & Castro, C. A. (2008). Mild traumatic brain injury in U.S. soldiers returning from Iraq. The New England Journal of Medicine, 358, 453–463.PubMedCrossRefGoogle Scholar
  79. Horowitz, A. L. (1995). MRI physics for radiologists: A visual approach. New York: Springer.CrossRefGoogle Scholar
  80. Hugenholtz, H., & Richard, M. T. (1982). Return to athletic competition following concussion. Canadian Medical Association Journal, 127, 827–829.PubMedGoogle Scholar
  81. Jaeggi, S. M., Seewer, R., Nirkko, A. C., Eckstein, D., Schroth, G., Groner, R., & Gutbrod, K. (2003). Does excessive memory load attenuate activation in the prefrontal cortex? Load-dependent processing in single and dual tasks: functional magnetic resonance imaging study. NeuroImage, 19, 210–225.PubMedCrossRefGoogle Scholar
  82. Jantzen, K. J. (2010). Functional magnetic resonance imaging of mild traumatic brain injury. Journal of Head Trauma Rehabilitation, 25, 256–266.PubMedCrossRefGoogle Scholar
  83. Jasper, H. H., Kershman, J., & Elvidge, A. R. (1940). Electroencephalographic study in clinical cases of injury of the head. Archives of Neurology and Psychiatry, 44, 328–350.Google Scholar
  84. Johnson, B. (2012). Metabolic alterations in corpus callosum may compromise brain functional connectivity in MTBI patients: An 1H-MRS study. Neuroscience Letters, 509, 5–8.PubMedCrossRefGoogle Scholar
  85. Johnson, B., Zhang, K., Gay, M., Horovitz, S., Hallett, M., Sebastianelli, W., & Slobounov, S. (2012). Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study. NeuroImage, 59, 511–518.PubMedCrossRefGoogle Scholar
  86. Jueptner, M., & Weiller, C. (1995). Review: does measurement of regional cerebral blood flow reflect synaptic activity?—implications for PET and fMRI. NeuroImage, 2, 148–156.PubMedCrossRefGoogle Scholar
  87. Kan, E. M., Ling, E.-A., & Lu, J. (2012). Microenvironment changes in mild traumatic brain injury. Brain Research Bulletin, 87, 359–372.PubMedCrossRefGoogle Scholar
  88. Kirov, I. (2007). Characterizing ‘mild’ in traumatic brain injury with proton MR spectroscopy in the thalamus: initial findings. Brain Injury, 21, 1147–1154.PubMedCrossRefGoogle Scholar
  89. Landau, S. M., Schumacher, E. H., Garavan, H., Druzgal, T. J., & D’Esposito, M. (2004). A functional MRI study of the influence of practice on component processes of working memory. NeuroImage, 22, 211–221.PubMedCrossRefGoogle Scholar
  90. Langlois, J. A., Rutland-Brown, W., & Wald, M. M. (2006). The epidemiology and impact of traumatic brain injury: a brief overview. The Journal of Head Trauma Rehabilitation, 21, 375–378.PubMedCrossRefGoogle Scholar
  91. Le Bihan, D. (2001). Diffusion tensor imaging: concepts and applications. Journal of Magnetic Resonance Imaging, 13, 534–546.PubMedCrossRefGoogle Scholar
  92. Levin, H. S. (2003). Neuroplasticity following non-penetrating traumatic brain injury. Brain Injury, 17, 665–674.PubMedCrossRefGoogle Scholar
  93. Lewine, J. D., Davis, J. T., Bigler, E. D., Thoma, R., Hill, D., Funke, M., Sloan, J. H., Hall, S., & Orrison, W. W. (2007). Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI. The Journal of Head Trauma Rehabilitation, 22, 141–155.PubMedCrossRefGoogle Scholar
  94. Lincoln, A. E., Caswell, S. V., Almquist, J. L., Dunn, R. E., Norris, J. B., & Hinton, R. Y. (2011). Trends in concussion incidence in high school sports a prospective 11-year study. The American Journal of Sports Medicine, 39, 958–963.PubMedCrossRefGoogle Scholar
  95. Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869–878.Google Scholar
  96. Lutzenberger, W., Elbert, T., & Rockstroh, B. (1987). A brief tutorial on the implications of volume conduction for the interpretation of the EEG. Journal of Psychophysiology, 1, 81–89.Google Scholar
  97. Mainero, C., Pantano, P., Caramia, F., & Pozzilli, C. (2006). Brain reorganization during attention and memory tasks in multiple sclerosis: insights from functional MRI studies. Journal of Neurological Sciences, 245, 93–98.CrossRefGoogle Scholar
  98. Maruishi, M., Miyatani, M., Nakao, T., & Muranaka, H. (2007). Compensatory cortical activation during performance of an attention task by patients with diffuse axonal injury: a functional magnetic resonance imaging study. Journal of Neurology, Neurosurgery, and Psychiatry, 78, 168–173.PubMedCrossRefGoogle Scholar
  99. Maruta, J., Lee, S. W., Jacobs, E. F., & Ghajar, J. (2010). A unified science of concussion. Annals of the New York Academy of Sciences, 1208, 58–66.PubMedCrossRefGoogle Scholar
  100. Maugans, T. A., Farley, C., Altaye, M., Leach, J., & Cecil, K. M. (2012). Pediatric sportsrelated concussion produces cerebral blood flow alterations. Pediatrics, 129, 28–37.PubMedCrossRefGoogle Scholar
  101. Max, J. E., Keatley, E., Wilde, E. A., Bigler, E. D., Levin, H. S., Schachar, R. J., Saunders, A., Ewing-Cobbs, L., Chapman, S. B., Dennis, M., & Yang, T. T. (2011) Anxiety disorders in children and adolescents in the first six months after traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 23, 29–39.PubMedCrossRefGoogle Scholar
  102. Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32, 1825–1835.PubMedCrossRefGoogle Scholar
  103. Mayer, A. R., Mannell, M. V., Ling, J., Elgie, R., Gasparovic, C., Phillips, J. P., Doezema, D., & Yeo, R. A. (2009). Auditory orienting and inhibition of return in mild traumatic brain injury: a FMRI study. Human Brain Mapping, 30, 4152–4166.PubMedCrossRefGoogle Scholar
  104. McAllister, T. W., Flashman, L. A., McDonald, B. C., & Saykin, A. J. (2006). Mechanisms of working memory dysfunction after mild and moderate TBI: evidence from functional MRI and neurogenetics. Journal of Neurotrauma, 23, 1450–1467.PubMedCrossRefGoogle Scholar
  105. McAllister, T. W., Saykin, A. J., Flashman, L. A., Sparling, M. B., Johnson, S. C., Guerin, S. J., Mamourian, A. C., Weaver, J. B., & Yanofsky, N. (1999). Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology, 53, 1300–1308.PubMedCrossRefGoogle Scholar
  106. McAllister, T. W., Sparling, M. B., Flashman, L. A., Guerin, S. J., Mamourian, A. C., & Saykin, A. J. (2001). Differential working memory load effects after mild traumatic brain injury. NeuroImage, 14, 1004–1012.PubMedCrossRefGoogle Scholar
  107. McClelland, R. J., Fenton, G. W., & Rutherford, W. (1994). The postconcussional-syndrome revisited. Journal of the Royal Society of Medicine, 87, 508–510.PubMedGoogle Scholar
  108. McCrea, M., Kelly, J. P., Kluge, J., Ackley, B., & Randolph, C. (1997). Standardized assessment of concussion in football players. Neurology, 48, 586–588.PubMedCrossRefGoogle Scholar
  109. McCrea, M., Prichep, L., Powell, M. R., Chabot, R., & Barr, W. B. (2010). Acute effects and recovery after sport-related concussion: a neurocognitive and quantitative brain electrical activity study. Journal of Head Trauma Rehabilitation, 25, 283–292.PubMedCrossRefGoogle Scholar
  110. McCrory, P., Johnston, K., Meeuwisse, W., Aubry, M., Cantu, R., Dvorak, J., Graf-Baumann, T., Kelly, J., Lovell, M., & Schamasch, P. (2005). Summary and agreement statement of the 2nd international conference on concussion in sport, prague 2004. Clinical Journal of Sport Medicine, 15, 48–55.PubMedCrossRefGoogle Scholar
  111. McCrory, P., Meeuwisse, W., Johnston, K., Dvorak, J., Aubry, M., Molloy, M., & Cantu, R. (2009). Consensus statement on concussion in sport 3(rd) international conference on concussion in sport held in Zurich, November 2008. Clinical Journal of Sport Medicine, 19, 185–200.PubMedCrossRefGoogle Scholar
  112. Montgomery, E. A., Fenton, G. W., McClelland, R. J., Macflynn, G., & Rutherford, W. H. (1991). The psychobiology of minor head-injury. Psychological Medicine, 21, 375–384.PubMedCrossRefGoogle Scholar
  113. Moser, R. S., Iverson, G. L., Echemendia, R. J., Lovell, M. R., Schatz, P., Webbe, F. M., Ruff, R. M., Barth, J. T., & Nan Policy Planning, C. (2007). Neuropsychological evaluation in the diagnosis and management of sports-related concussion. Archives of Clinical Neuropsychology, 22, 909–916.PubMedCrossRefGoogle Scholar
  114. Nakamura, T., Hillary, F. G., & Biswal, B. B. (2009). Resting network plasticity following brain injury. PLoS One, 4, e8220.PubMedCrossRefGoogle Scholar
  115. Neil, J., Miller, J., Mukherjee, P., & Hüppi, P. S. (2002). Diffusion tensor imaging of normal and injured developing human brain—a technical review. NMR in Biomedicine, 15, 543–552.PubMedCrossRefGoogle Scholar
  116. Nevin, N. C. (1967). Neuropathological changes in the white matter following head injury. Journal of Neuropathology and Experimental Neurology, 26, 77–84.PubMedCrossRefGoogle Scholar
  117. Nuwer, M. R., Hovda, D. A., Schrader, L. M., & Vespa, P. M. (2005). Routine and quantitative EEG in mild traumatic brain injury. Clinical Neurophysiology, 116, 2001–2025.PubMedCrossRefGoogle Scholar
  118. Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 87, 9868–9872.PubMedCrossRefGoogle Scholar
  119. Ogawa, S., Menon, R. S., Tank, D. W., Kim, S. G., Merkle, H., Ellermann, J. M., & Ugurbil, K. (1993). Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophysical Journal, 64(3), 803–812.Google Scholar
  120. Olejniczak, P. (2006). Neurophysiologic basis of EEG. Journal of Clinical Neurophysiology, 23, 186–189.PubMedCrossRefGoogle Scholar
  121. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging. Human Brain Mapping, 25, 46–59.PubMedCrossRefGoogle Scholar
  122. Pantano, P., Mainero, C., & Caramia, F. (2006). Functional brain reorganization in multiple sclerosis: evidence from fMRI studies. Journal of Neuroimaging, 16, 104–114.PubMedCrossRefGoogle Scholar
  123. Perlstein, W. M., Cole, M. A., Demery, J. A., Seignourel, P. J., Dixit, N. K., Larson, M. J., & Briggs, R. W. (2004). Parametric manipulation of working memory load in traumatic brain injury: behavioral and neural correlates. Journal of the International Neuropsychological Society: JINS, 10, 724–741.PubMedCrossRefGoogle Scholar
  124. Pratapchand, R., Sinniah, M., & Salem, F. A. (1988). Cognitive evoked-potential P300—a metric for cerebral concussion. Acta Neurologica Scandinavica, 78, 185–189.CrossRefGoogle Scholar
  125. Ptito, A., Chen, J. K., & Johnston, K. M. (2007). Contributions of functional magnetic resonance imaging (fMRI) to sport concussion evaluation. NeuroRehabilitation, 22, 217–227.PubMedGoogle Scholar
  126. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–682.PubMedCrossRefGoogle Scholar
  127. Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of Neuroscience, 29, 449–476.PubMedCrossRefGoogle Scholar
  128. Reijneveld, J. C., Ponten, S. C., Berendse, H. W., & Stam, C. J. (2007). The application of graph theoretical analysis to complex networks in the brain. Clinical Neurophysiology, 118, 2317–2331.PubMedCrossRefGoogle Scholar
  129. Ross, B. D. (1998). 1H MRS in acute traumatic brain injury. Journal of Magnetic Resonance Imaging, 8, 829–840.PubMedCrossRefGoogle Scholar
  130. Ruff, R. M. (2011). Mild traumatic brain injury and neural recovery: rethinking the debate. NeuroRehabilitation, 28, 167–180.PubMedGoogle Scholar
  131. Rypma, B., & D’Esposito, M. (1999). The roles of prefrontal brain regions in components of working memory: effects of memory load and individual differences. Proceedings of the Academy of Natural Sciences of United States, 96, 6558–6563.CrossRefGoogle Scholar
  132. Sanchez-Carrion, R., Fernandez-Espejo, D., Junque, C., Falcon, C., Bargallo, N., Roig, T., Bernabeu, M., Tormos, J. M., & Vendrell, P. (2008). A longitudinal fMRI study of working memory in severe TBI patients with diffuse axonal injury. NeuroImage, 43, 421–429.PubMedCrossRefGoogle Scholar
  133. Sanchez-Carrion, R., Gomez, P. V., Junque, C., Fernandez-Espejo, D., Falcon, C., Bargallo, N., Roig-Rovira, T., Ensenat-Cantallops, A., & Bernabeu, M. (2008). Frontal hypoactivation on functional magnetic resonance imaging in working memory after severe diffuse traumatic brain injury. Journal of Neurotrauma, 25, 479–494.PubMedCrossRefGoogle Scholar
  134. Scheibel, R. S., Newsome, M. R., Troyanskaya, M., Steinberg, J. L., Goldstein, F. C., Mao, H., & Levin, H. S. (2009). Effects of severity of traumatic brain injury and brain reserve on cognitive-control related brain activation. Journal of Neurotrauma, 26, 1447–1461.PubMedCrossRefGoogle Scholar
  135. Schwarz, A. (2010). Suicide reveals signs of a disease seen in NFL. In: The New York Times New York City: Arthur Ochs Sulzberger, Jr.Google Scholar
  136. Shah, S., Yallampalli, R., Merkley, T. L., McCauley, S. R., Bigler, E. D., Macleod, M., Chu, Z., Li, X., Troyanskaya, M., Hunter, J. V., Levin, H. S., & Wilde, E. A. (2012). Diffusion tensor imaging and volumetric analysis of the ventral striatum in adults with traumatic brain injury. Brain Injury, 26, 201–210.PubMedCrossRefGoogle Scholar
  137. Sharp, D. J. (2011). Investigating white matter injury after mild traumatic brain injury. Current Opinion in Neurology, 24, 558–563.PubMedCrossRefGoogle Scholar
  138. Sharp, D. J., & Ham, T. E. (2011). Investigating white matter injury after mild traumatic brain injury. Current Opinion in Neurology, 24(6), 558–563.Google Scholar
  139. Shekdar, K. (2011). Role of magnetic resonance spectroscopy in evaluation of congenital/developmental brain abnormalities. Seminars in Ultrasound, CT, and MRI, 32, 510–538.PubMedCrossRefGoogle Scholar
  140. Signoretti, S., Pietro, V., Vagnozzi, R., Lazzarino, G., Amorini, A. M., Belli, A., D’Urso, S., & Tavazzi, B. (2009). Transient alterations of creatine, creatine phosphate, N-acetylaspartate and high-energy phosphates after mild traumatic brain injury in the rat. Molecular and Cellular Biochemistry, 333, 269–277.PubMedCrossRefGoogle Scholar
  141. Slobounov, S., Cao, C., & Sebastianelli, W. (2009). Differential effect of first versus second concussive episodes on wavelet information quality of EEG. Clinical Neurophysiology, 120, 862–867.PubMedCrossRefGoogle Scholar
  142. Slobounov, S., Sebastianelli, W., & Hallett, M. (2012). Residual brain dysfunction observed one year post-mild traumatic brain injury: Combined EEG and balance study. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology.Google Scholar
  143. Slobounov, S., Sebastianelli, W., & Moss, R. (2005). Alteration of posture-related cortical potentials in mild traumatic brain injury. Neuroscience Letters, 383, 251–255.PubMedCrossRefGoogle Scholar
  144. Slobounov, S., Sebastianelli, W., & Newell, K. M. (2011a). Incorporating virtual reality graphics with brain imaging for assessment of sport-related concussions. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, 1383–1386.Google Scholar
  145. Slobounov, S., Slobounov, E., & Newell, K. (2006a). Application of virtual reality graphics in assessment of concussion. Cyberpsychology & Behavior, 9, 188–191.CrossRefGoogle Scholar
  146. Slobounov, S., Tutwiler, R., Sebastianelli, W., & Slobounov, E. (2006b). Alteration of postural responses to visual field motion in mild traumatic brain injury. Neurosurgery, 59, 134–139. discussion 134–139.PubMedCrossRefGoogle Scholar
  147. Slobounov, S. M., Gay, M., Zhang, K., Johnson, B., Pennell, D., Sebastianelli, W., Horovitz, S., & Hallett, M. (2011b). Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. NeuroImage, 55, 1716–1727.PubMedCrossRefGoogle Scholar
  148. Slobounov, S. M., Zhang, K., Pennell, D., Ray, W., Johnson, B., & Sebastianelli, W. (2010). Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study. Experimental Brain Research, 202, 341–354.CrossRefGoogle Scholar
  149. Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., Filippini, N., Watkins, K. E., Toro, R., Laird, A. R., & Beckmann, C. F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106, 13040–13045.PubMedCrossRefGoogle Scholar
  150. Snook, L. (2005). Diffusion tensor imaging of neurodevelopment in children and young adults. NeuroImage (Orlando, Fla), 26, 1164.Google Scholar
  151. Sporns, O., Honey, C. J., & Kotter, R. (2007). Identification and classification of hubs in brain networks. PLoS One, 2, e1049.PubMedCrossRefGoogle Scholar
  152. Stulemeijer, M., Vos, P. E., van der Werf, S., van Dijk, G., Rijpkema, M., & Fernandez, G. (2010). How mild traumatic brain injury may affect declarative memory performance in the post-acute stage. Journal of Neurotrauma, 27, 1585–1595.PubMedCrossRefGoogle Scholar
  153. Teasdale, T. W., & Engberg, A. W. (2001). Suicide after traumatic brain injury: a population study. Journal of Neurology, Neurosurgery and Psychiatry, 71, 436–440.CrossRefGoogle Scholar
  154. Tebano, M. T., Cameroni, M., Gallozzi, G., Loizzo, A., Palazzino, G., Pezzini, G., & Ricci, G. F. (1988). EEG spectral-analysis after minor head-injury in man. Electroencephalography and Clinical Neurophysiology, 70, 185–189.PubMedCrossRefGoogle Scholar
  155. Thatcher, R. W., Walker, R. A., Gerson, I., & Geisler, F. H. (1989). EEG discriminant analyses of mild head trauma. Electroencephalography and Clinical Neurophysiology, 73, 94–106.PubMedCrossRefGoogle Scholar
  156. Theriault, M., De Beaumont, L., Gosselin, N., Filipinni, M., & Lassonde, M. (2009). Electrophysiological abnormalities in well functioning multiple concussed athletes. Brain Injury, 23, 899–906.PubMedCrossRefGoogle Scholar
  157. Theriault, M., De Beaumont, L., Tremblay, S., Lassonde, M., & Jolicoeur, P. (2011). Cumulative effects of concussions in athletes revealed by electrophysiological abnormalities on visual working memory. Journal of Clinical and Experimental Neuropsychology, 33, 30–41.PubMedCrossRefGoogle Scholar
  158. Thornton, K. E. (1999). Exploratory investigation into mild brain injury and discriminant analysis with high frequency bands (32–64 Hz). Brain Injury, 13, 477–488.PubMedCrossRefGoogle Scholar
  159. Turner, G. R., & Levine, B. (2008). Augmented neural activity during executive control processing following diffuse axonal injury. Neurology, 71, 812–818.PubMedCrossRefGoogle Scholar
  160. Uryu, K., Laurer, H., McIntosh, T., Pratico, D., Martinez, D., Leight, S., Lee, V. M. Y., & Trojanowski, J. Q. (2002). Repetitive mild brain trauma accelerates A beta deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis. Journal of Neuroscience, 22, 446–454.PubMedGoogle Scholar
  161. Vagnozzi, R., Signoretti, S., Cristofori, L., Alessandrini, F., Floris, R., Isgro, E., Ria, A., Marziale, S., Zoccatelli, G., Tavazzi, B., Del Bolgia, F., Sorge, R., Broglio, S. P., McIntosh, T. K., & Lazzarino, G. (2010). Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain, 133, 3232–3242.PubMedCrossRefGoogle Scholar
  162. Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2, 229–239.PubMedCrossRefGoogle Scholar
  163. Walz, N. C. (2008). Late proton magnetic resonance spectroscopy following traumatic brain injury during early childhood: relationship with neurobehavioral outcomes. Journal of Neurotrauma, 25, 94–103.PubMedCrossRefGoogle Scholar
  164. Walz, N. C., Cecil, K. M., Wade, S. L., & Michaud, L. J. (2008). Late proton magnetic resonance spectroscopy following traumatic brain injury during early childhood: relationship with neurobehavioral outcomes. Journal of Neurotrauma, 25(2), 94–103.Google Scholar
  165. Watson, M. R., Fenton, G. W., McClelland, R. J., Lumsden, J., Headley, M., & Rutherford, W. H. (1995). The post-concussional state—neurophysiological aspects. The British Journal of Psychiatry, 167, 514–521.PubMedCrossRefGoogle Scholar
  166. Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9, 971–978.PubMedCrossRefGoogle Scholar
  167. Wilde, E. A., McCauley, S. R., Hunter, J. V., Bigler, E. D., Chu, Z., Wang, Z. J., Hanten, G. R., Troyanskaya, M., Yallampalli, R., Li, X., Chia, J., & Levin, H. S. (2008). Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology, 70, 948–955.PubMedCrossRefGoogle Scholar
  168. Wilde, E. A., Merkley, T. L., Bigler, E. D., Max, J. E., Schmidt, A. T., Ayoub, K. W., McCauley, S. R., Hunter, J. V., Hanten, G., Li, X., Chu, Z. D., & Levin, H. S. (2012). Longitudinal changes in cortical thickness in children after traumatic brain injury and their relation to behavioral regulation and emotional control. International Journal of Developmental Neuroscience, 30, 267–276.PubMedCrossRefGoogle Scholar
  169. Williams, D. (1941). The electro-encephalogram in acute head injury. Journal of Neurology and Psychology, 107–30.Google Scholar
  170. Yuen, T. J., Browne, K. D., Iwata, A., & Smith, D. H. (2009). Sodium channelopathy induced by mild axonal trauma worsens outcome after a repeat injury. Journal of Neuroscience Research, 87, 3620–3625.PubMedCrossRefGoogle Scholar
  171. Zhang, K., Johnson, B., Gay, M., Horovitz, S. G., Hallett, M., Sebastianelli, W., & Slobounov, S. (2012). Default mode network in concussed individuals in response to the YMCA physical stress test. Journal of Neurotrauma, 29, 756–765.PubMedCrossRefGoogle Scholar
  172. Zhang, K., Johnson, B., Pennell, D., Ray, W., Sebastianelli, W., & Slobounov, S. (2010). Are functional deficits in concussed individuals consistent with white matter structural alterations: combined FMRI & DTI study. Experimental Brain Research, 204, 57–70.CrossRefGoogle Scholar
  173. Zhu, T., Hu, R., Qiu, X., Taylor, M., Tso, Y., Yiannoutsos, C., Navia, B., Mori, S., Ekholm, S., Schifitto, G., & Zhong, J. (2011). Quantification of accuracy and precision of multi-center DTI measurements: a diffusion phantom and human brain study. NeuroImage, 56, 1398–1411.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Semyon Slobounov
    • 1
    • 2
    • 3
  • Michael Gay
    • 1
  • Brian Johnson
    • 1
    • 4
  • Kai Zhang
    • 1
  1. 1.Department of KinesiologyThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.National Institute of Health, National Institute of Neurological Disorders and StrokeBethesdaUSA
  3. 3.Department of Orthopaedics and Medical RehabilitationThe Pennsylvania State University, HMCUniversity ParkUSA
  4. 4.Department of BioengineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations