Brain Imaging and Behavior

, Volume 6, Issue 2, pp 137–192 | Cite as

A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury

  • M. E. ShentonEmail author
  • H. M. Hamoda
  • J. S. Schneiderman
  • S. Bouix
  • O. Pasternak
  • Y. Rathi
  • M.-A. Vu
  • M. P. Purohit
  • K. Helmer
  • I. Koerte
  • A. P. Lin
  • C.-F. Westin
  • R. Kikinis
  • M. Kubicki
  • R. A. Stern
  • R. Zafonte


Mild traumatic brain injury (mTBI), also referred to as concussion, remains a controversial diagnosis because the brain often appears quite normal on conventional computed tomography (CT) and magnetic resonance imaging (MRI) scans. Such conventional tools, however, do not adequately depict brain injury in mTBI because they are not sensitive to detecting diffuse axonal injuries (DAI), also described as traumatic axonal injuries (TAI), the major brain injuries in mTBI. Furthermore, for the 15 to 30 % of those diagnosed with mTBI on the basis of cognitive and clinical symptoms, i.e., the “miserable minority,” the cognitive and physical symptoms do not resolve following the first 3 months post-injury. Instead, they persist, and in some cases lead to long-term disability. The explanation given for these chronic symptoms, i.e., postconcussive syndrome, particularly in cases where there is no discernible radiological evidence for brain injury, has led some to posit a psychogenic origin. Such attributions are made all the easier since both posttraumatic stress disorder (PTSD) and depression are frequently co-morbid with mTBI. The challenge is thus to use neuroimaging tools that are sensitive to DAI/TAI, such as diffusion tensor imaging (DTI), in order to detect brain injuries in mTBI. Of note here, recent advances in neuroimaging techniques, such as DTI, make it possible to characterize better extant brain abnormalities in mTBI. These advances may lead to the development of biomarkers of injury, as well as to staging of reorganization and reversal of white matter changes following injury, and to the ability to track and to characterize changes in brain injury over time. Such tools will likely be used in future research to evaluate treatment efficacy, given their enhanced sensitivity to alterations in the brain. In this article we review the incidence of mTBI and the importance of characterizing this patient population using objective radiological measures. Evidence is presented for detecting brain abnormalities in mTBI based on studies that use advanced neuroimaging techniques. Taken together, these findings suggest that more sensitive neuroimaging tools improve the detection of brain abnormalities (i.e., diagnosis) in mTBI. These tools will likely also provide important information relevant to outcome (prognosis), as well as play an important role in longitudinal studies that are needed to understand the dynamic nature of brain injury in mTBI. Additionally, summary tables of MRI and DTI findings are included. We believe that the enhanced sensitivity of newer and more advanced neuroimaging techniques for identifying areas of brain damage in mTBI will be important for documenting the biological basis of postconcussive symptoms, which are likely associated with subtle brain alterations, alterations that have heretofore gone undetected due to the lack of sensitivity of earlier neuroimaging techniques. Nonetheless, it is noteworthy to point out that detecting brain abnormalities in mTBI does not mean that other disorders of a more psychogenic origin are not co-morbid with mTBI and equally important to treat. They arguably are. The controversy of psychogenic versus physiogenic, however, is not productive because the psychogenic view does not carefully consider the limitations of conventional neuroimaging techniques in detecting subtle brain injuries in mTBI, and the physiogenic view does not carefully consider the fact that PTSD and depression, and other co-morbid conditions, may be present in those suffering from mTBI. Finally, we end with a discussion of future directions in research that will lead to the improved care of patients diagnosed with mTBI.


Mild traumatic brain injury mTBI TBI Diffusion tensor imaging DTI Magnetic resonance imaging MRI Diffusion-weighted imaging DWI Susceptibility-weighted imaging SWI Signature injury of war Concussion Postconcussive syndrome Postconcussive symptoms Complicated mTBI Uncomplicated mTBI Physiogenesis Psychogenesis Miserable minority 



This work was supported in part by the INTRuST Posttraumatic Stress Disorder and Traumatic Brain Injury Clinical Consortium funded by the Department of Defense Psychological Health/Traumatic Brain Injury Research Program (X81XWH-07-CC-CS-DoD; MES, JSS, SB, OP, MK, YR, M-AV, C-FW, RZ), by an NIH NINDS funded R01 (R01 NS 078337; RS, MES, JSS), by a Center for Integration of Medicine (CIMIT) Soldier in Medicine Award (SB, MES), by an NIH NIMH funding R01 (R01 MH082918; SB), by funding from the National Research Service Award (T32AT000051; MPP) from the National Center for Complementary and Alternative Medicine (NCCAM) at the National Institute of Health, by the Harvard Medical School Fellowship as part of the Eleanor and Miles Shore Fellowship Program (HH), by the Deutsche Akademischer Austauschdienst (DAAD; IK), and by funding from NCRR, including the National Alliance for Medical Image Computing (NAMIC-U54 EBOO5149; RK, MK, MES), and the Neuroimaging Analysis Center (NAC; P41RR13218; RK and CF).


  1. Adams, J. H., Doyle, D., et al. (1989). Diffuse axonal injury in head injury: definition, diagnosis, and grading. Histopathology, 15, 49–59.PubMedCrossRefGoogle Scholar
  2. Alexander, M. P. (1995). Mild TBI: pathophysiology, natural history, and clinical management. Neurology, 45(7), 253–260.CrossRefGoogle Scholar
  3. Anderson, A. (2005). Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magnetic Resonance in Medicine, 54(5), 1194–1206.PubMedCrossRefGoogle Scholar
  4. Anderson, C. V., Bigler, E. D., et al. (1995). Frontal lobe lesions, diffuse damage, and neuropsychological functioning in traumatic brain-injured patients. Journal of Clinical and Experimental Neuropsychology, 17, 900–908.PubMedCrossRefGoogle Scholar
  5. Anderson, C. V., Wood, D. M., et al. (1996). Lesion volume, injury severity, and thalamic integrity following head injury. Journal of Neurotrauma, 13(2), 59–65.PubMedCrossRefGoogle Scholar
  6. Arciniegas, D. B., Anderson, C. A., et al. (2005). Mild traumatic brain injury: a neuropsychiatric approach to diagnosis, evaluation, and treatment. Neuropsychiatric Disease and Treatment, 1, 311–327.PubMedGoogle Scholar
  7. Arfanakis, K., Haughton, V. M., et al. (2002). Diffusion tensor MR imaging in diffuse axonal injury. AJNR. American Journal of Neuroradiology, 23(5), 794–802.PubMedGoogle Scholar
  8. Ashwal, S., Holshouser, B. A., et al. (2006). Use of advanced neuroimaging techniques in the evaluation of pediatric traumatic brain injury. Developmental Neuroscience, 28, 309–326.PubMedCrossRefGoogle Scholar
  9. Assaf, Y., & Pasternak, O. (2008). Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. Journal of Molecular Neuroscience, 34(1), 51–61.PubMedCrossRefGoogle Scholar
  10. Assaf, Y., Ben-Bashat, D., et al. (2002). High b-value q-space analyzed diffusion-weighted MRI: application to multiple sclerosis. Magnetic Resonance in Medicine, 47(1), 115–126.PubMedCrossRefGoogle Scholar
  11. Assaf, Y., Chapman, J., Ben-Bashat, D., et al. (2005). White matter changes in multiple sclerosis: correlation of q-space diffusion MRI and 1-H MRS. Magnetic Resonance Imaging, 23(6), 703–710.PubMedCrossRefGoogle Scholar
  12. Babikian, T., Freier, M. C., et al. (2005). Susceptibility weighted imaging: neuropsychologic outcome and pediatric head injury. Pediatric Neurology, 33(3), 184–194.PubMedCrossRefGoogle Scholar
  13. Babikian, T., Freier, M. C., et al. (2006). MR spectroscopy: predicting long-term neuropsychological outcome following pediatric TBI. Journal of Magnetic Resonance Imaging, 24, 801–811.PubMedCrossRefGoogle Scholar
  14. Barkhoudarian, G., Houda, D. A., et al. (2011). The molecular pathophysiology of concussive brain injury. Clinics in Sports Medicine, 30, 33–48.PubMedCrossRefGoogle Scholar
  15. Barmpoutis, A., Hwang, M. S., Howland, D., et al. (2009). Regularized positive-definite fourth order tensor field estimation from DW-MRI. NeuroImage, 45(1), S153–S162.PubMedCrossRefGoogle Scholar
  16. Basser, P. J., Mattiello, J., et al. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1), 259–267.PubMedCrossRefGoogle Scholar
  17. Basser, P. J., Pajevic, S., Pierpaoli, C., et al. (2000). In vivo fiber tractography using DT–MRI data. Magnetic Resonance in Medicine, 44, 625–632.PubMedCrossRefGoogle Scholar
  18. Bazarian, J. J., Wong, T., et al. (1999). Epidemiology and predictors of post-concussive syndrome after minor head injury in an emergency population. Brain Injury, 13(3), 173–189.PubMedCrossRefGoogle Scholar
  19. Bazarian, J. J., Blyth, B., et al. (2006). Bench to bedside: evidence for brain injury after concussion–looking beyond the computed tomography scan. Academic Emergency Medicine, 13(2), 199–214.PubMedGoogle Scholar
  20. Bazarian, J. J., Zhong, J., et al. (2007). DTI detects clinically important axonal damage after mild TBI: a pilot study. Journal of Neurotrauma, 24(9), 1447–1459.PubMedCrossRefGoogle Scholar
  21. Bazarian, J. J.,& Zhu, T., et al. (2011). Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion. Magnetic Resonance Imaging. Nov 11. [Epub ahead of print]Google Scholar
  22. Behrens, T., Woolrich, M., Jenkinson, M., et al. (2003). Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine, 50, 1077–1088.PubMedCrossRefGoogle Scholar
  23. Belanger, H. G., Vanderploeg, R. D., et al. (2007). Recent neuroimaging techniques in mild traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 19(1), 5–20.PubMedCrossRefGoogle Scholar
  24. Belanger, H. D., Kretzmer, T., et al. (2009). Symptom complaints following combat-related traumatic brain injury: Relationship to traumatic brain injury severity and posttraumatic stress disorder. Journal of the International Neuropsychological Society, 16, 194–199.PubMedCrossRefGoogle Scholar
  25. Bell, R. S., & Loop, J. W. (1971). The utility and futility of radiographic skull examination for trauma. The New England Journal of Medicine, 284(5), 236–239.PubMedCrossRefGoogle Scholar
  26. Benson, R. R., Meda, S. A., et al. (2007). Global white matter analysis of diffusion tensor images is predictive of injury severity in TBI. Journal of Neurotrauma, 24(3), 446–459.PubMedCrossRefGoogle Scholar
  27. Bergeson, A. G., Lundin, R., et al. (2004). Clinical rating of cortical atrophy and cognitive correlates following traumatic brain injury. Clinical Neuropsychology, 18(4), 509–520.CrossRefGoogle Scholar
  28. Bigler, E. D. (2004). Neuropsychological results and neuropathological findings at autopsy in a case of mild traumatic brain injury. Journal of the International Neuropsychological Society, 10(5), 794–800.PubMedCrossRefGoogle Scholar
  29. Bigler, E. D. (2008). Neuropsychology and clinical neuroscience of persistent post-concussive syndrome. Journal of the International Neuropsychological Society, 14(1), 1–22.PubMedCrossRefGoogle Scholar
  30. Bigler, E. D., Blatter, D. D., et al. (1997). Hippocampal volume in normal aging and traumatic brain injury. AJNR. American Journal of Neuroradiology, 18(1), 11–23.PubMedGoogle Scholar
  31. Bjornemo, M., Brun, A., Kikinis, R., & Westin, C.-F. (2002). Regularized stochasticwhite matter tractography using diffusion tensor MRI. Medical Image Computing and Computer Assisted Intervention (MICCAI), 435–442.Google Scholar
  32. Blumbergs, P. C., Scott, G., et al. (1994). Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet, 344(8929), 1055–1056.PubMedCrossRefGoogle Scholar
  33. Bouix, S., Pelavin, P., et al. (2011). Diagnosis of diffuse axonal injury with diffusion tensor imaging. The 3rd Federal Interagency Conference on TBI, Washington DC.Google Scholar
  34. Brandstack, N., Kurki, T., et al. (2011). Diffusivity of normal-appearing tissue in acute traumatic brain injury. Clinical Neuroradiology, 21(2), 75–82.PubMedCrossRefGoogle Scholar
  35. Brooks, W. M., Friedman, S. D., et al. (2001). Magnetic resonance spectroscopy in TBI. The Journal of Head Trauma Rehabilitation, 16(2), 149–164.PubMedCrossRefGoogle Scholar
  36. Bruns, J. J., & Jagoda, A. (2009). Mild traumatic brain injury. The Mount Sinai Journal of Medicine, 76, 129–137.CrossRefGoogle Scholar
  37. Budde, M. D., Kim, J. H., et al. (2007). Toward accurate diagnosis of white matter pathology using diffusion tensor imaging. Magnetic Resonance in Medicine, 57(4), 688–695.PubMedCrossRefGoogle Scholar
  38. Budde, M. D., Janes, L., et al. (2011). The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: validation in the rat using Fourier analysis of stained tissue sections. Brain, 134(8), 2248–2260.PubMedCrossRefGoogle Scholar
  39. Carroll, L. J., Cassidy, J. D., et al. (2004a). Prognosis for mild traumatic brain injury: results of the WHO collaborating centre task force on mild traumatic brain injury. Journal of Rehabilitation Medicine, 43(Suppl.), 84–105.PubMedCrossRefGoogle Scholar
  40. Carroll, L. J., Cassidy, J. D., et al. (2004b). Systematic search and review procedures: results of the WHO collaborating centre task force on mild traumatic brain injury. Journal of Rehabilitation Medicine, 43(Suppl.), 11–14.PubMedCrossRefGoogle Scholar
  41. CDC (2010). Injury, prevention, & control: traumatic brain injury. Center for Disease Control and Prevention.
  42. Cecil, K. M., Hills, E. C., Sandel, M. E., et al. (1998). Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. Journal of Neurosurgery, 88(5), 795–801.PubMedCrossRefGoogle Scholar
  43. Cheung, M. M., Hui, E. S., et al. (2009). Does diffusion kurtosis imaging lead to better neural tissue characterization? A rodent brain maturation study. NeuroImage, 45(2), 386–392. doi: 10.1016/j.neuroimage2008.12.018.
  44. Ciccarelli, O., Catani, M., Johansen-Berg, H., et al. (2008). Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurology, 7, 715–727.PubMedCrossRefGoogle Scholar
  45. Cohen, B. A., Inglese, M., et al. (2007). Proton MR spectroscopy and MRI-volumetry in mild traumatic brain injury. AJNR. American Journal of Neuroradiology, 28(5), 907–913.PubMedGoogle Scholar
  46. Coles, J. P. (2007). Imaging after brain injury. British Journal of Anaesthesia, 99(1), 49–60.PubMedCrossRefGoogle Scholar
  47. Conturo, T. E., Lori, N. F., Cull, T. S., et al. (1999). Tracking neuronal fiber pathways in the living human brain. Neurobiology, 96, 10422–10427.Google Scholar
  48. Cubon, V. A., & Putukian, M. (2011). A diffusion tensor imaging study on the white matter skeleton in individuals with sports-related concussion. Journal of Neurotrauma, 28(2), 189–201.PubMedCrossRefGoogle Scholar
  49. Davenport, N. D., Lim, K. O., et al. (2011). Diffuse and sptially variable white matter disruptions are associated with blast-related mild traumatic brain injury. Neuroimage. Oct 20. [Epub ahead of print]Google Scholar
  50. Delmarcelle, T., & Hesselink, L. (1992). Visualization of second order tensor fields and matrix data. Proceedings IEEE Visualization, 316–323.Google Scholar
  51. Ding, K., Marquez de Plata, C., et al. (2008). Cerebral atrophy after traumatic white matter injury: correlation with acute neuroimaging and outcome. Journal of Neurotrauma, 25, 1433–1440.PubMedCrossRefGoogle Scholar
  52. Duhaime, A. C., Gean, A. D., et al. (2010). Common data elements in radiologic imaging of traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 91(11), 1661–1666.PubMedCrossRefGoogle Scholar
  53. Eisenberg, H. M., & Levin, H. S. (1989). Computed tomography and magnetic resonance imaging in mild to moderate head injury. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.), Mild head injury (pp. 133–141). NY: Oxford University Press.Google Scholar
  54. Ennis, D. B., & Kindlmann, G. (2006). Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images. Magnetic Resonance in Medicine, 55(1), 136–146.PubMedCrossRefGoogle Scholar
  55. Fan, J., McCandliss, B. D., et al. (2005). The activation of attentional networks. NeuroImage, 26(2), 471–479.PubMedCrossRefGoogle Scholar
  56. Faul, M. D., Xu, L., et al. (2010). TBI in the United States: Emergency department visits, hospitalizations, and deaths 2002-2006. Atlanta (GA): Centers for Disease Control and Prevention, National Center for Injury Prevention and Control.Google Scholar
  57. Fischl, B., van der Kouwe, A. C., et al. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14, 11–22.PubMedCrossRefGoogle Scholar
  58. Fitzgerald, D. B., & Crosson, B. A. (2011). Diffusion weighted imaging and neuropsychological correlates in adults with mild traumatic brain injury. International Journal of Psychophysiology, 82(1), 79–85.PubMedCrossRefGoogle Scholar
  59. Fujiwara, E., Schwartz, M. L., et al. (2008). Ventral frontal cortex functions and quantified MRI in traumatic brain injury. Neuropsychologia, 46, 461–474.PubMedCrossRefGoogle Scholar
  60. Gale, S. D., Johnson, S. C., et al. (1995). Nonspecific white matter degeneration following traumatic brain injury. Journal of the International Neuropsychological Society, 1(1), 17–28.PubMedCrossRefGoogle Scholar
  61. Gale, S. D., Baxter, L., et al. (2005). Traumatic brain injury and grey matter concentration: a preliminary voxel based morphometry study. Journal of Neurology, Neurosurgery & Psychiatry, 76(7), 984–988.CrossRefGoogle Scholar
  62. Garnett, M. R., Blamire, A. M., et al. (2000). Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain, 120(10), 2046–2054.CrossRefGoogle Scholar
  63. Geary, E. K., Kraus, M. F., et al. (2010). Verbal learning differences in chronic mild traumatic brain injury. Journal of the International Neuropsychological Society, 16(3), 506–516.PubMedCrossRefGoogle Scholar
  64. Gentry, L. R. (1994). Imaging of closed head injury. Radiology, 191, 1–17.PubMedGoogle Scholar
  65. Gentry, L. R., Godersky, J. C., et al. (1988). MR imaging of head trauma: review of the distribution and radiopathologic features of traumatic lesions. AJR American Journal of Roentgenology, 150(3), 663–672.PubMedGoogle Scholar
  66. Goldstein, M. (1990). Traumatic brain injury: a silent epidemic (Editorial). Annals of Neurology, 27, 327.PubMedCrossRefGoogle Scholar
  67. Green, R., Koshimori, Y., et al. (2010). Research digest. Understanding the organic basis of persistent complaints in mTBI: findings from functional and structural neuroimaging. Neuropsychological Rehabilitation, 20(3), 471–478.PubMedCrossRefGoogle Scholar
  68. Greiffenstein, M. (2008). Clinical myths of forensic neuropsychology. Clin Neuropsych, 1–11.Google Scholar
  69. Grossman, E. J., & Ge, Y., et al. (2011). Thalamus and cognitive impairment in mild traumatic brain injury: A diffusional kurtosis imaging study. Journal of Neurotrauma. Sep 15. [Epub ahead of print]Google Scholar
  70. Haacke, E. M., Xu, Y., et al. (2004). Susceptibility weighted imaging (SWI). Magnetic Resonance in Medicine, 52, 612–618.PubMedCrossRefGoogle Scholar
  71. Haacke, E. M., Mittal, S., et al. (2009). Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR American Journal of Neuroradiology, 30(1), 19–30.PubMedCrossRefGoogle Scholar
  72. Haacke, E. M., Duhaime, A. C., et al. (2010). Common data elements in radiologic imaging of traumatic brain injury. Journal of Magnetic Resonance Imaging, 32(3), 516–543.PubMedCrossRefGoogle Scholar
  73. Hackney, D. B. (1991). Skull radiography in the evaluation of acute head trauma: a survey of current practice. Radiology, 181(3), 711–714.PubMedGoogle Scholar
  74. Hartikainen, K. M., Waljas, M., et al. (2010). Persistent symptoms in mild to moderate traumatic brain injury associated with executive dysfunction. Journal of Clinical and Experimental Neuropsychology, 32(7), 767–774.PubMedCrossRefGoogle Scholar
  75. Hayes, R. L., & Dixon, C. E. (1994). Neurochemical changes in mild head injury. Seminars in Neurology, 14, 25–31.PubMedCrossRefGoogle Scholar
  76. Henry, L. C., Tremblay, J., et al. (2011). Acute and chronic changes in diffusivity measures after sports concussion. Journal of Neurotrauma, 28(10), 2049–2059.PubMedCrossRefGoogle Scholar
  77. Himanen, L., Portin, R., et al. (2005). Cognitive functions in relation to MRI findings 30 years after traumatic brain injury. Brain Injury, 19, 93–100.PubMedCrossRefGoogle Scholar
  78. Hoge, C. W., McGurk, D., et al. (2008). Mild TBI in U. S. soldiers returning from Iraq. The New England Journal of Medicine, 358(5), 453–463.PubMedCrossRefGoogle Scholar
  79. Hoge, C. W., Goldberg, H. M., et al. (2009). Care of war veterans with mild traumatic brain injury–flawed perspectives. The New England Journal of Medicine, 360(16), 1588–1591.PubMedCrossRefGoogle Scholar
  80. Holli, K. K., Harrison, L., et al. (2010). Texture analysis of MR images of patients with mild traumatic brain injury. BMC Medical Imaging, 10, 8.PubMedCrossRefGoogle Scholar
  81. Holli, K. K., Wäljas, M., et al. (2010). Mild traumatic brain injury: tissue texture analysis correlated to neuropsychological and DTI findings. Academic Radiology, 17(9), 1096–1102.PubMedCrossRefGoogle Scholar
  82. Holshouser, B. A., Tong, K. A., et al. (2005). Proton MR spectroscopic imaging depicts diffuse axonal injury in children with TBI. AJNR. American Journal of Neuroradiology, 26(5), 1276–1285.PubMedGoogle Scholar
  83. Huang, M., Theilmann, R., et al. (2009). Integrated imaging approach with MEG and DTI to detect mild traumatic brain injury in military and civilian patients. Journal of Neurotrauma, 26(8), 1213–1226.PubMedCrossRefGoogle Scholar
  84. Hughes, D. G., Jackson, A., et al. (2004). Abnormalities on magnetic resonance imaging seen acutely following brain injury: correlation with neuropsychological tests and delayed recovery. Neuroradiology, 46, 550–558.PubMedGoogle Scholar
  85. Huisman, T. A., Schwamm, L. H., et al. (2004). Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR. American Journal of Neuroradiology, 25(3), 370–376.PubMedGoogle Scholar
  86. Hunter, J. V., & Wilde, E. A., et al. (2011). Emerging imaging tools for use with traumatic brain injury research. Journal of Neurotrauma. Oct 17. [Epub ahead of print]Google Scholar
  87. Inglese, M., Makani, S., et al. (2005). Diffuse axonal injury in mild TBI: a diffusion tensor imaging study. Journal of Neurosurgery, 103(2), 298–303.PubMedCrossRefGoogle Scholar
  88. Irimia, A., Chambers, M. C., et al. (2011). Comparison of acute and chronic traumatic brain injury using semi-automatic multimodal segmentation of MR volumes. Journal of Neurotrauma, 11, 2287–2306.CrossRefGoogle Scholar
  89. Iverson, G. L., Lovell, M. R., et al. (2000). Prevalence of abnormal CT-scans following mild head injury. Brain Injury, 14(12), 1057–1061.PubMedCrossRefGoogle Scholar
  90. Jang, S. H. (2011). Diffusion tensor imaging studies on corticospinal tract injury following traumatic brain injury: a review. Neuro Rehabilitation, 29(4), 339–345.PubMedGoogle Scholar
  91. Jenkins, A., Teasdale, G., et al. (1986). Brain lesions detected by magnetic resonance imaging in mild to severe head trauma. Lancet, 2, 445–646.PubMedCrossRefGoogle Scholar
  92. Jensen, J. H., Helpern, J. A., et al. (2005). Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magnetic Resonance in Medicine, 53(6), 1432–1440.PubMedCrossRefGoogle Scholar
  93. Johnston, K. M., Ptito, A., et al. (2001). New frontiers in diagnostic imaging in concussive head injury. Clinical Journal of Sport Medicine, 11(3), 166–175.PubMedCrossRefGoogle Scholar
  94. Jones, D. K. (2008). Studying connections in the living human brain with diffusion MRI. Cortex, 44, 936–952.PubMedCrossRefGoogle Scholar
  95. Kou, Z., Tong, K. A., et al. (2010). The role of advanced MR imaging findings as biomarkers of TBI. The Journal of Head Trauma Rehabilitation, 25(4), 267–282.PubMedCrossRefGoogle Scholar
  96. Kraus, M. F., Susmaras, T., et al. (2007). White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain, 130(10), 2508–2519.PubMedCrossRefGoogle Scholar
  97. Kubicki, M., McCarley, R., et al. (2007). A review of diffusion tensor imaging studies in schizophrenia. Journal of Psychiatric Research, 41(1–2), 15–30.PubMedCrossRefGoogle Scholar
  98. Kumar, R., Gupta, R. K., et al. (2009). Comparative evaluation of corpus callosum DTI metrics in acute mild and moderate traumatic brain injury: its correlation with neuropsychometric tests. Brain Injury, 23(7), 675–685.PubMedCrossRefGoogle Scholar
  99. Kurtzke, J. F., & Kurland, L. T. (1993). The epidemiology of neurologic disease. In R. J. Joynt (Ed.), Clinical neurology, rev (Ch. 66). Philadelphia: JB Lippincott.Google Scholar
  100. Lange, R. T., & Iversion, G. L., et al. (2011). Diffusion tensor imaging findings are not strongly associated with postconcussional disorder 2 months following mild traumatic brain injury. Journal of Head Trauma Rehabilitation. Jun 2. [Epub ahead of print]Google Scholar
  101. Langlois, J. A., Rutland-Brown, W., et al. (2006). The epidemiology and impact of traumatic brain injury: a brief overview. The Journal of Head Trauma Rehabilitation, 21(5), 375–378.PubMedCrossRefGoogle Scholar
  102. Lazar, M. (2010). Mapping brain anatomical connectivity using white matter tractography. NMR in Biomedicine, 23, 821–835.PubMedCrossRefGoogle Scholar
  103. Le Bihan, D. (1991). Molecular diffusion nuclear magnetic resonance imaging. Magnetic Resonance Quarterly, 7(1), 1–30.PubMedGoogle Scholar
  104. Le, T. H., & Gean, A. D. (2009). Neuroimaging of traumatic brain injury. The Mount Sinai Journal of Medicine, 76(2), 145–162.CrossRefGoogle Scholar
  105. Leung, K. K., Clarkson, M. J., et al. (2010). Robust atrophy rate measurement in Alzheimer’s disease using multi-site serial MRI: tissue-specific intensity normalization and parameter selection. NeuroImage, 50(2), 516–523.PubMedCrossRefGoogle Scholar
  106. Levin, H. S., Matiss, S., et al. (1984). Neurobehavioral outcome following head injury: a three center study. Journal of Neurosurgery, 66, 234–243.CrossRefGoogle Scholar
  107. Levin, H. S., Amparo, E., et al. (1987). Magnetic resonance imaging and computerized tomography in relation to the neurobehavioral sequelae of mild and moderate head injuries. Journal of Neurosurgery, 66(5), 706–713.PubMedCrossRefGoogle Scholar
  108. Levin, H. S., Wilde, E., et al. (2010). Diffusion tensor imaging of mild to moderate blast-related traumatic brain injury and its sequelae. Journal of Neurotrauma, 27(4), 683–694.PubMedCrossRefGoogle Scholar
  109. Levine, B., Kovacevic, N., et al. (2008). The Toronto traumatic brain injury study: injury severity and quantified MRI. Neurology, 70, 771–778.PubMedCrossRefGoogle Scholar
  110. Lin, A., Ross, B. D., et al. (2005). Efficacy of proton magnetic resonance spectroscopy in neurological diagnosis and neurotherapeutic decision making. NeuroRx, 2(2), 197–214.PubMedCrossRefGoogle Scholar
  111. Lin, A. P., & Ramadan, S., et al. (2010). Neurochemical changes in athletes with chronic traumatic encephalopathy. In Radiological society of North America: Chicago, IL.Google Scholar
  112. Lipton, M. L., Gellella, C., et al. (2008). Multifocal white matter ultrastructural abnormalities in mild traumatic brain injury with cognitive disability: a voxel-wise analysis of diffusion tensor imaging. Journal of Neurotrauma, 25(11), 1335–1342.PubMedCrossRefGoogle Scholar
  113. Lipton, M. L., Gulko, E., et al. (2009). Diffusion-tensor imaging implicates prefrontal axonal injury in executive function impairment following very mild traumatic brain injury. Radiology, 252(3), 816–824.PubMedCrossRefGoogle Scholar
  114. Lishman, W. A. (1988). Physiogenesis and psychogenesis in the 'post-concussional syndrome'. The British Journal of Psychiatry, 153, 460–469.PubMedCrossRefGoogle Scholar
  115. Little, D. M., Kraus, M. F., et al. (2010). Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology, 74(7), 558–564.PubMedCrossRefGoogle Scholar
  116. Liu, A. Y., Maldjian, A. J., et al. (1999). Traumatic brain injury: diffusion-weighted MR imaging findings. AJNR. American Journal of Neuroradiology, 20(9), 1636–1641.PubMedGoogle Scholar
  117. Liu, M. C., Akinyi, L., Scharf, D., et al. (2010). Ubiquitin C-terminal hydroslase-L1 as a biomarker for ischemic and traumatic brain injury in rats. European Journal of Neuroscience, 31, 722–732.PubMedCrossRefGoogle Scholar
  118. Ljungqvist, J., Nilssonn, D., et al. (2011). Longitudinal study of the diffusion tensor imaging properties of the corpus callosum in acute and chronic diffuse axonal injury. Brain Injury, 25(4), 370–378.PubMedCrossRefGoogle Scholar
  119. Lo, C., Shifteh, K., et al. (2009). Diffusion tensor imaging abnormalities in patients with mild traumatic brain injury and neurocognitive impairment. Journal of Computer Assisted Tomography, 33(2), 293–297.PubMedCrossRefGoogle Scholar
  120. MacDonald, C. L., Johnson, A. M., et al. (2011). Detection of blast-related traumatic brain injury in U. S. military personnel. The New England Journal of Medicine, 364(22), 2091–2100.CrossRefGoogle Scholar
  121. Machulda, M. M., Bergquist, T. F., et al. (1988). Relationship between stress, coping, and postconcussion in a healthy adult population. Archives of Clinical Neuropsychology, 13(5), 415–424.Google Scholar
  122. MacKenzie, J. D., Siddiqi, F., et al. (2002). Brain atrophy in mild or moderate traumatic brain injury: a longitudinal quantitative analysis. AJNR. American Journal of Neuroradiology, 23(9), 1509–1515.PubMedGoogle Scholar
  123. Malcolm, J. G., Shenton, M. E., & Rathi, Y. (2010). Filtered multi-tensor tractography. IEEE Transactions on Medical Imaging, 29, 1664–1675.PubMedCrossRefGoogle Scholar
  124. Maller, J. J., Thomson, R. H., et al. (2010). Traumatic brain injury, major depression, and diffusion tensor imaging: making connections. Brain Research Reviews, 64(1), 213–240.PubMedCrossRefGoogle Scholar
  125. Maruta, J., Suh, M., et al. (2010). Visual tracking synchronization as a metric for concussion screening. The Journal of Head Trauma Rehabilitation, 25(4), 293–305.PubMedCrossRefGoogle Scholar
  126. Matsushita, M., Hosoda, K., et al. (2011). Utility of diffusion tensor imaging in the acute stage of mild to moderate traumatic brain injury for detecting white matter lesions and predicting long-term cognitive function in adults. Journal of Neurosurgery, 115(1), 130–139.PubMedCrossRefGoogle Scholar
  127. Matthews, S. C., Strigo, I. A., et al. (2011). A multimodal imaging study in U. S. veterans of Operations Iraqi and Enduring Freedom with and without major depression after blast-related concussion. NeuroImage, 54(Suppl 1), S69–S75.PubMedCrossRefGoogle Scholar
  128. Mayer, A. R., Ling, J., et al. (2010). A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology, 74(8), 643–650.PubMedCrossRefGoogle Scholar
  129. McAllister, T. W., Ford, J. C., et al. (2012). Maximum principal strain and strain rate associated with concussion diagnosis correlates with changes in corpus callosum white matter indices. Annals of Biomedical Engineering, 40(1), 127–140.PubMedCrossRefGoogle Scholar
  130. Messe, A., Caplain, S., et al. (2011). Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Human Brain Mapping, 32(6), 999–1011.PubMedCrossRefGoogle Scholar
  131. Metzler-Baddeley, C., O'Sullivan, M. J., Bells, S., et al. (2012). How and how not to correct for CSF-contamination in diffusion MRI. NeuroImage, 59, 1394–1403.PubMedCrossRefGoogle Scholar
  132. Miles, L., Grossman, R. I., et al. (2008). Short-term DTI predictors of cognitive dysfunction in mild traumatic brain injury. Brain Injury, 22(2), 115–122.PubMedCrossRefGoogle Scholar
  133. Miller, L. (1996). Neuropsychology and pathophysiology of mild head injury and the postconcussive syndrome: clinical and forensic considerations. Journal of Cognitive Rehabilitation, 14, 8–23.Google Scholar
  134. Mitra, P. P. (1992). Diffusion propagator as a probe of the structure of porous media. Physical Review Letters, 68(24), 3555–3558.PubMedCrossRefGoogle Scholar
  135. Mittl, R. L., Garossman, R. I., et al. (1994). Prevalence of MR evidence of diffuse axonal injury in patients with mild head injury and normal head CT findings. AJNR. American Journal of Neuroradiology, 15(8), 1583–1589.PubMedGoogle Scholar
  136. Mondello, S., Muller, U., Jeromin, A., et al. (2011). Blood-based diagnostics of traumatic brain injuries. Expert Review of Molecular Diagnostics, 11(1), 65–78.PubMedCrossRefGoogle Scholar
  137. Mori, S., Crain, B. J., Chacko, V. P., et al. (1999). Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45, 265–269.PubMedCrossRefGoogle Scholar
  138. Nelles, M., Block, W., et al. (2008). Combined 3T diffusion tensor tractography and 1H-MR spectroscopy in motor neuron disease. American Journal of Neuroradiology, 29(9), 1708–1714. doi: 10.3174/ajnr.A1201.Google Scholar
  139. Niogi, S. N., & Mukherjee, P. (2010). Diffusion tensor imaging of mild TBI. The Journal of Head Trauma Rehabilitation, 25(4), 241–255.PubMedCrossRefGoogle Scholar
  140. Niogi, S. N., Mukherjee, P., et al. (2008a). Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR. American Journal of Neuroradiology, 29(5), 967–973.PubMedCrossRefGoogle Scholar
  141. Niogi, S. N., Mukherjee, P., et al. (2008b). Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain, 131(12), 3209–3221.PubMedCrossRefGoogle Scholar
  142. Nolin, P., & Heroux, L. (2006). Relations among sociodemographic, neurologic, clinical, and neuropsychologic variables, and vocational status following mild TBI: a follow-up study. The Journal of Head Trauma Rehabilitation, 21(6), 514–526.PubMedCrossRefGoogle Scholar
  143. Okie, S. (2005). Traumatic brain injury in the war zone. New England Journal of Medicine, 352, 2043–2047.PubMedCrossRefGoogle Scholar
  144. Oppenheimer, D. R. (1968). Microscopic lesions in the brain following head injury. Journal of Neurology, Neurosurgery & Psychiatry, 31, 299–306.CrossRefGoogle Scholar
  145. Ozarian, M. E. (2003). Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magnetic Resonance in Medicine, 50(5), 955–965.CrossRefGoogle Scholar
  146. Park, J. H., Park, S. W., et al. (2009). Detection of traumatic cerebral microbleeds by susceptibility-weighted image of MRI. Journal of Korean Neurosurgical Society, 46, 365–369.PubMedCrossRefGoogle Scholar
  147. Pasternak, O., Assaf, Y., et al. (2008). Variational multiple-tensor fitting of fiber-ambiguous diffusion-weighted magnetic resonance imaging voxels. Magnetic Resonance Imaging, 26(8), 1133–1144.PubMedCrossRefGoogle Scholar
  148. Pasternak, O., Sochen, N., et al. (2009). Free water elimination and mapping from diffusion MRI. Magnetic Resonance in Medicine, 62(3), 717–730.PubMedCrossRefGoogle Scholar
  149. Pasternak, O., & Bouix, S., et al. (2010). Diffusion imaging reveals two spatially separable mechanisms. In T. B. I. Mild (Ed.), The 3rd federal interagency conference on TBI. Washington, DC.Google Scholar
  150. Pasternak, O., & Kubicki, O., et al. (2011a). Identification of neuroinflammation in mild traumatic brain injuries using a free-water atlas. Annual Meeting of the Organization for the Human Brain Mapping.Google Scholar
  151. Pasternak, O., Westin, C.-F., et al. (2011). Free water modulation of white matter integrity measures - with application to schizophrenia. Proceedings International Society of Magnetic Resonance in Medicine, 19, 2544.Google Scholar
  152. Pfefferbaum, A., Sullivan, E. V., et al. (2000). In vivo detection and functional correlates of white matter microstructural disruption in chronic alcoholism. Alcoholism, Clinical and Experimental Research, 24(8), 1214–1221.PubMedCrossRefGoogle Scholar
  153. Pierpaoli, C., & Basser, P. J. (1996). Toward a quantitative assessment of diffusion anisotropy. Magnetic Resonance in Medicine, 36, 893–906.PubMedCrossRefGoogle Scholar
  154. Pohl, K. M., Bouix, S., et al. (2007). A hierarchical algorithm for MR brain image parcellation. IEEE Transactions on Medical Imaging, 26(9), 1201–1212.PubMedCrossRefGoogle Scholar
  155. Povlishock, J. T., & Coburn, T. H. (1989). Morphopathological change associated with mild head injury. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.), Mild head injury (pp. 37–52). New York: Oxford University.Google Scholar
  156. Provencher, S. W. (2001). Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR in Biomedicine, 14(4), 260–264.PubMedCrossRefGoogle Scholar
  157. Reichenbach, J. R., Markus, B., et al. (2000). High-resolution MR venography at 3.0 tesla. Journal of Computer Assisted Tomography, 24(6), 949–957.PubMedCrossRefGoogle Scholar
  158. Rimel, R. W., Giordani, B., et al. (1981). Disability caused by minor head injury. Neurosurgery, 9(3), 221–228.PubMedCrossRefGoogle Scholar
  159. Ross, B. D., Ernst, T., et al. (1998). 1H MRS in acute traumatic brain injury. Journal of Magnetic Resonance Imaging, 8(4), 829–840.PubMedCrossRefGoogle Scholar
  160. Ross, B., et al. (2005). MR spectroscopy of hypoxic brain injury. In J. Gillard, A. Waldman, & P. B. Barker (Eds.), Clinical MR neuroimaging: Diffusion, perfusion and spectroscopy (pp. 690–705). Cambridge: Cambridge University Press.Google Scholar
  161. Ruff, R. M., Camenzuli, L., et al. (1996). Miserable minority: emotional risk factors that influence the outcome of a mild TBI. Brain Injury, 10(8), 551–565.PubMedCrossRefGoogle Scholar
  162. Rutgers, D. R., Fillard, P., et al. (2008). Diffusion tensor imaging characteristics of the corpus callosum in mild, moderate, and severe traumatic brain injury. AJNR. American Journal of Neuroradiology, 29(9), 1730–1735.PubMedCrossRefGoogle Scholar
  163. Rutgers, D. R., Toulgoat, F., et al. (2008). White matter abnormalities in mild traumatic brain injury: a diffusion tensor imaging study. AJNR. American Journal of Neuroradiology, 29(3), 514–519.PubMedCrossRefGoogle Scholar
  164. Salmond, C. H., Menon, D. K., et al. (2006). Diffusion tensor imaging in chronic head injury survivors: correlations with learning and memory indices. NeuroImage, 29(1), 117–124.PubMedCrossRefGoogle Scholar
  165. Scheid, R., Preul, C., et al. (2003). Diffuse axonal injury associated with chronic traumatic brain injury, evidence from T2*-weighted gradient-echo imaging at 3T. AJNR. American Journal of Neuroradiology, 24, 1049–1056.PubMedGoogle Scholar
  166. Scheid, R., Ott, D. V., et al. (2007). Comparative magnetic resonance imaging at 1.5 and 3 Tesla for the evaluation of traumatic microbleeds. Journal of Neurotrauma, 24(12), 1811–1816.PubMedCrossRefGoogle Scholar
  167. Schonberger, M., Ponsford, J., et al. (2009). The Relationship between age, injury severity, and MRI findings after traumatic brain injury. Journal of Neurotrauma, 26, 2157–2167.PubMedCrossRefGoogle Scholar
  168. Seeger, U., Klose, U., et al. (2003). Parameterized evaluation of macromolecules and lipids in proton MR spectroscopy of brain diseases. Magnetic Resonance in Medicine, 49(1), 19–28.PubMedCrossRefGoogle Scholar
  169. Shenton, M. E., Whitford, T. J., et al. (2010). Structural neuroimaging in schizophrenia: from methods to insights to treatments. Dialogues in Clinical Neuroscience, 12(3), 269–332.Google Scholar
  170. Shutter, L., Tong, K. A., et al. (2004). Proton MRS in acute TBI: role for glutamate/glutamine and choline for outcome prediction. Journal of Neurotrauma, 21(12), 1693–1705.PubMedCrossRefGoogle Scholar
  171. Singh, M., Jeong, J., et al. (2010). Novel diffusion tensor imaging methodology to detect and quantify injured regions and affected brain pathways in traumatic brain injury. Magnetic Resonance Imaging, 28(1), 22–40.PubMedCrossRefGoogle Scholar
  172. Smith, D. H., Meaney, D. F., et al. (1995). New magnetic resonance imaging techniques for the evaluation of traumatic brain injury. Journal of Neurotrauma, 12(4), 573–577.PubMedCrossRefGoogle Scholar
  173. Smith, S. M., Jenkinson, M., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4), 1487–1505.PubMedCrossRefGoogle Scholar
  174. Smits, M., Houston, G. C., et al. (2011). Microstructural brain injury in post-concussion syndrome after minor head injury. Neuroradiology, 53(8), 553–563.PubMedCrossRefGoogle Scholar
  175. Song, S. K., Sun, S. W., et al. (2001). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage, 17(3), 1429–1436.CrossRefGoogle Scholar
  176. Song, S. K., Sun, S. W., et al. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage, 20(3), 1714–1722.PubMedCrossRefGoogle Scholar
  177. Sosin, D. M., Sniejek, J. E., et al. (1996). Incidence of mild and moderate brain injury in the United States. Brain Injury, 10, 47–54.PubMedCrossRefGoogle Scholar
  178. Sponheim, S. R., McGuire, K. A., et al. (2011). Evidence of disrupted functional connectivity in the brain after combat-related blast injury. NeuroImage, 54(Suppl 1), S21–S29.PubMedCrossRefGoogle Scholar
  179. Stein, M. B., & McAllister, T. W. (2009). Exploring the convergence of posttraumatic stress disorder and mild TBI. The American Journal of Psychiatry, 166(7), 768–776.PubMedCrossRefGoogle Scholar
  180. Stern, R. A., & Riley, D. A., et al. (2011). Long-term consequences of repetitive brain trauma: Chronic traumatic encephalopathy. PM R.Google Scholar
  181. Strangman, G. E., O'Neil-Pirozzi, T. M., et al. (2010). Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury. Frontiers in Human Neuroscience, 4, 182.PubMedCrossRefGoogle Scholar
  182. Tang, C. Y., Friedman, et al. (2007). Correlations between Diffusion Tensor Imaging (DTI) and Magnetic Resonance Spectroscopy (1H MRS) in schizophrenic patients and normal controls. BMC Psychiatry, 7(1), 25. doi: 10.1186/1471-244X-7-25.
  183. Tanielian, T., & Jaycox, L. H. (2008). Invisible wounds of war: Psychological and cognitive injuries, their consequences and services to assist recovery. Santa Monica: CAO: RAND Corp.Google Scholar
  184. Tate, D. F., & Bigler, E. D. (2000). Fornix and hippocampal atrophy in traumatic brain injury. Learning and Memory, 7(6), 442–446.PubMedCrossRefGoogle Scholar
  185. Teasdale, G., & Jennett, B. (1974). Assessment of coma and impaired consciousness. A practical scale. Lancet, 2(7872), 81–84.PubMedCrossRefGoogle Scholar
  186. Thurman, D. J. (2001). The epidemiology and economics of head trauma. In L. Miller & R. Hayes (Eds.), Head trauma: Basic, preclinical, and clinical directions (pp. 324–347). NY: Wiley.Google Scholar
  187. Tollard, E., Galanaud, D., Perlbarg, V., et al. (2009). Experience of diffusion tensor imaging and 1H spectroscopy for outcome prediction in severe traumatic brain injury: preliminary results. Critical Care Medicine, 37(4), 1448–1455.PubMedCrossRefGoogle Scholar
  188. Tong, K. A., Ashwal, S., et al. (2003). Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology, 227(2), 332–339.PubMedCrossRefGoogle Scholar
  189. Tong, K. A., Ashwal, S., et al. (2004). Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions. Annals of Neurology, 56(1), 36–50.PubMedCrossRefGoogle Scholar
  190. Tournier, J. D., Yeh, C. H., Calamante, F., et al. (2008). Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. NeuroImage, 42(2), 617–624.PubMedCrossRefGoogle Scholar
  191. Trivedi, M. A., Ward, M. A., et al. (2007). Longitudinal changes in global brain volume between 79 and 409 days after traumatic brain injury: relationship with duration of coma. Journal of Neurotrauma, 24, 766–771.PubMedCrossRefGoogle Scholar
  192. Tuch, D. S., Reese, T. G., et al. (2002). High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine, 48(4), 577–582.PubMedCrossRefGoogle Scholar
  193. Vagnozzi, R., Signoretti, S., et al. (2010). Assessment of metabolic brain damage and recovery following mild TBI: a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain, 133(11), 3232–3242.PubMedCrossRefGoogle Scholar
  194. Vanderploeg, R. D., Curtiss, G., et al. (2007). Long-term morbidities following self-reported mild traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 29, 585–598.PubMedCrossRefGoogle Scholar
  195. Warden, D. (2006). Military TBI during Iraq and Afghanistan wars. The Journal of Head Trauma Rehabilitation, 21, 398–402.PubMedCrossRefGoogle Scholar
  196. Warner, M. A., Marquez de la Plata, C., et al. (2010). Assessing spatial relationships between axonal integrity, regional brain volumes, and neuropsychological outcomes after traumatic axonal injury. Journal of Neurotrauma, 27(12), 2121–2130.PubMedCrossRefGoogle Scholar
  197. Warner, M. A., Youn, T. S., et al. (2010). Regionally selective atrophy after traumatic axonal injury. Archives of Neurology, 67(11), 1336–1344.PubMedCrossRefGoogle Scholar
  198. Westin, C.-F., Maier, S. E., Khidhir, B., Everett, P., Jolesz, F. A., & Kikinis, R. (1999). Image processing for diffusion tensor magnetic resonance imaging. In Medical Image Computing and Computer- Google Scholar
  199. Whitford, T. J., & Kubicki, M., et al. (2011). Diffusion tensor imaging, structural connectivity, and schizophrenia. Schizophr Res Treatment, 1–7.Google Scholar
  200. Wilde, E. A., Bigler, E. D., et al. (2004). Alcohol abuse and traumatic brain injury: quantitative magnetic resonance imaging and neuropsychological outcome. Journal of Neurotrauma, 21, 137–147.PubMedCrossRefGoogle Scholar
  201. Wilde, E. A., Bigler, E. D., et al. (2006). Post-traumatic amnesia predicts long- term cerebral atrophy in traumatic brain injury. Brain Injury, 20, 695–699.PubMedCrossRefGoogle Scholar
  202. Yount, R., Raschke, K. A., et al. (2002). Traumatic brain injury and atrophy of the cingulate gyrus. The Journal of Neuropsychiatry and Clinical Neurosciences, 14, 416–442.PubMedCrossRefGoogle Scholar
  203. Yu-Chien, W. U., Andrew, L., et al. (2007). Hybrid diffusion imaging. NeuroImage, 36(3), 617–629.CrossRefGoogle Scholar
  204. Yurgelun-Todd, D. A., Bueler, E., et al. (2011). Neuroimaging correlates of traumatic brain injury and suicidal behavior. The Journal of Head Trauma Rehabilitation, 26(4), 276–289.PubMedCrossRefGoogle Scholar
  205. Zhang, K., Johnson, B., et al. (2010). Are functional deficits in concussed individuals consistent with white matter structural alterations: combined FMRI & DTI study. Experimental Brain Research, 204(1), 57–70.CrossRefGoogle Scholar
  206. Zhou, J., Xu, S., Proctor, J., et al. (2012). Diffusion Kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury. NeuroImage, 59, 467–477.CrossRefGoogle Scholar
  207. Zou, K. H., Greve, D. N., et al. (2005). Reproducibility of functional MR imaging: preliminary results of prospective multi-institutional study performed by biomedical informatics research network. Radiology, 237(3), 781–789.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2012

Authors and Affiliations

  • M. E. Shenton
    • 1
    • 2
    Email author
  • H. M. Hamoda
    • 2
    • 3
  • J. S. Schneiderman
    • 2
  • S. Bouix
    • 2
  • O. Pasternak
    • 2
    • 4
  • Y. Rathi
    • 2
  • M.-A. Vu
    • 2
  • M. P. Purohit
    • 2
    • 5
    • 6
  • K. Helmer
    • 7
  • I. Koerte
    • 2
  • A. P. Lin
    • 8
  • C.-F. Westin
    • 4
  • R. Kikinis
    • 9
  • M. Kubicki
    • 2
  • R. A. Stern
    • 10
  • R. Zafonte
    • 5
  1. 1.Clinical Neuroscience Laboratory, Laboratory of Neuroscience, Department of PsychiatryVA Boston Healthcare System, and Harvard Medical SchoolBrocktonUSA
  2. 2.Psychiatry Neuroimaging Laboratory, Departments of Psychiatry and RadiologyBrigham and Women’s Hospital, and Harvard Medical SchoolBostonUSA
  3. 3.Department of PsychiatryChildren’s Hospital, and Harvard Medical SchoolBostonUSA
  4. 4.Laboratory of Mathematics in Imaging, Department of RadiologyBrigham and Women’s Hospital, and Harvard Medical SchoolBostonUSA
  5. 5.Spaulding Rehabilitation HospitalMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  6. 6.Division of MedicineBeth Israel-Deaconness Medical Center, and Harvard Medical SchoolBostonUSA
  7. 7.Department of Radiology, Athinoula A.Martinos CenterMassachusetts General Hospital, and Harvard Medical SchoolCharlestownUSA
  8. 8.Center for Clinical Spectroscopy, Department of RadiologyBrigham and Women’s Hospital, and Harvard Medical SchoolBostonUSA
  9. 9.Surgical Planning Laboratory, MRI Division, Department of RadiologyBrigham and Women’s Hospital, and Harvard Medical SchoolBostonUSA
  10. 10.Center for The Study of Traumatic Encephalopathy, Departments of Neurology and NeurosurgeryBoston University Medical SchoolBostonUSA

Personalised recommendations