Brain Imaging and Behavior

, Volume 6, Issue 3, pp 404–416 | Cite as

Diffusion tensor imaging in moderate-to-severe pediatric traumatic brain injury: changes within an 18 month post-injury interval

  • Elisabeth A. Wilde
  • Kareem W. Ayoub
  • Erin D. Bigler
  • Zili D. Chu
  • Jill V. Hunter
  • Trevor C. Wu
  • Stephen R. McCauley
  • Harvey S. Levin


Traumatic brain injury (TBI) is a leading cause of death and disability in children, yet little is known regarding the pattern of TBI-related microstructural change and its impact on subsequent development. Diffusion tensor imaging (DTI) was used to examine between-group differences at two time points (planned intervals of 3 months and 18 months post-injury) and within-group longitudinal change in a group of children and adolescents aged 7–17 years with moderate-to-severe TBI (n = 20) and a comparison group of children with orthopedic injury (OI) (n = 21). In the 3- and 18-month cross-sectional analyses, tract-based spatial statistics (TBSS) generally revealed decreased fractional anisotropy (FA) and increased apparent diffusion coefficient (ADC) in the TBI group in regions of frontal, temporal, parietal, and occipital white matter as well as several deep subcortical structures, though areas of FA decrease were more prominent at the 3-month assessment, and areas of ADC increase were more prominent at the 18 month assessment, particularly in the frontal regions. In terms of the within-group changes over time, the OI group demonstrated primarily diffuse increases in FA over time, consistent with previous findings of DTI-measured white matter developmental change. The TBI group demonstrated primarily regions of FA decrease and ADC increase over time, consistent with presumed continued degenerative change, though regions of ADC decrease were also appreciated. These results suggest that TBI-related microstructural changes are dynamic in children and continue until at least 18 months post-injury. Understanding the course of these changes in DTI metrics may be important in TBI for facilitating advances in management and intervention.


Traumatic brain injury Diffusion tensor imaging Tract-based spatial statistics Longitudinal Children 



This work was supported by the National Institute Neurological Disorders and Stroke grant R01-NS21889 (“Neurobehavioral outcome of head injury in children,” Levin, PI). We also acknowledge the generous contribution of Mission Connect of the TIRR Foundation. We gratefully acknowledge the contribution of Ana C. Vasquez, Deleene Menefee, PhD., Summer Lane, Lori Cook, Sandra B. Chapman, PhD., and Gillian Hotz, PhD. in data collection, and Joshua Cooper and Alyssa P. Ibarra in manuscript preparation. We thank the participants and their families for their participation in this research. None of the authors have any financial or other relationship(s) that could be construed as a conflict of interest with respect to the content of this manuscript. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


  1. Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3), 316–329. doi: 10.1016/j.nurt.2007.05.011.PubMedCrossRefGoogle Scholar
  2. Arfanakis, K., Haughton, V. M., Carew, J. D., Rogers, B. P., Dempsey, R. J., & Meyerand, M. E. (2002). Diffusion tensor MR imaging in diffuse axonal injury. AJNR. American Journal of Neuroradiology, 23(5), 794–802.PubMedGoogle Scholar
  3. Ashtari, M., Cervellione, K. L., Hasan, K. M., Wu, J., McIlree, C., Kester, H., et al. (2007). White matter development during late adolescence in healthy males: A cross-sectional diffusion tensor imaging study. NeuroImage, 35(2), 501–510.Google Scholar
  4. Barnea-Goraly, N., Menon, V., Eckert, M., Tamm, L., Bammer, R., Karchemskiy, A., et al. (2005). White matter development during childhood and adolescence: A cross-sectional diffusion tensor imaging study. Cereb Cortex, 15(12), 1848–1854.Google Scholar
  5. Bendlin, B. B., Ries, M. L., Lazar, M., Alexander, A. L., Dempsey, R. J., Rowley, H. A., et al. (2008). Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. NeuroImage, 42(2), 503–514. doi: 10.1016/j.neuroimage.2008.04.254.PubMedCrossRefGoogle Scholar
  6. Benson, R. R., Meda, S. A., Vasudevan, S., Kou, Z., Govindarajan, K. A., Hanks, R. A., et al. (2007). Global white matter analysis of diffusion tensor images is predictive of injury severity in traumatic brain injury. Journal of Neurotrauma, 24(3), 446–459.PubMedCrossRefGoogle Scholar
  7. Bigler, E. D., Abildskov, T. J., Wilde, E. A., McCauley, S. R., Li, X., Merkley, T. L., et al. (2010). Diffuse damage in pediatric traumatic brain injury: a comparison of automated versus operator-controlled quantification methods. NeuroImage, 50(3), 1017–1026. doi: 10.1016/j.neuroimage.2010.01.003.PubMedCrossRefGoogle Scholar
  8. Bonekamp, D., Nagae, L. M., Degaonkar, M., Matson, M., Abdalla, W. M., Barker, P. B., et al. (2007). Diffusion tensor imaging in children and adolescents: Reproducibility, hemispheric, and age-related differences. NeuroImage, 34(2), 733–742.Google Scholar
  9. Chastain, C. A., Oyoyo, U. E., Zipperman, M., Joo, E., Ashwal, S., Shutter, L. A., et al. (2009). Predicting outcomes of traumatic brain injury by imaging modality and injury distribution. Journal of Neurotrauma, 26(8), 1183–1196. doi: 10.1089/neu.2008.0650.PubMedCrossRefGoogle Scholar
  10. Clayden, J. D., Jentschke, S., Munoz, M., Cooper, J. M., Chadwick, M. J., Banks, T., et al. (2011). Normative development of white matter tracts: Similarities and differences in relation to age, gender, and intelligence. Cereb Cortex, In press.Google Scholar
  11. Eluvathingal, T. J., Hasan, K. M., Kramer, L., Fletcher, J. M., & Ewing-Cobbs, L. (2007). Quantitative diffusion tensor tractography of association and projection fibers in normally developing children and adolescents. Cereb Cortex, 17(12), 2760–2768.Google Scholar
  12. Ewing-Cobbs, L., Prasad, M. R., Swank, P., Kramer, L., Cox, C. S., Jr., Fletcher, J. M., et al. (2008). Arrested development and disrupted callosal microstructure following pediatric traumatic brain injury: relation to neurobehavioral outcomes. NeuroImage, 42(4), 1305–1315. doi: 10.1016/j.neuroimage.2008.06.031.PubMedCrossRefGoogle Scholar
  13. Faul, M., Xu, L., Wald, M., & al., e. (2010). Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations, and Deaths, 2002-2006. (pp. 1-74): US Department of Health and Human Services, Centers for Disease Control and Prevention.Google Scholar
  14. Gale, S. D., & Prigatano, G. P. (2010). Deep white matter volume loss and social reintegration after traumatic brain injury in children. The Journal of Head Trauma Rehabilitation, 25(1), 15–22. doi: 10.1097/HTR.0b013e3181c39960.PubMedCrossRefGoogle Scholar
  15. Giorgio, A., Watkins, K. E., Chadwick, M., James, S., Winmill, L., Douaud, G., et al. (2010). Longitudinal changes in grey and white matter during adolescence. NeuroImage, 49(1), 94–103.Google Scholar
  16. Huisman, T. A., Schwamm, L. H., Schaefer, P. W., Koroshetz, W. J., Shetty-Alva, N., Ozsunar, Y., et al. (2004). Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR. American Journal of Neuroradiology, 25(3), 370–376.PubMedGoogle Scholar
  17. Inglese, M., Makani, S., Johnson, G., Cohen, B. A., Silver, J. A., Gonen, O., et al. (2005). Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. Journal of Neurosurgery, 103(2), 298–303.PubMedCrossRefGoogle Scholar
  18. Kinnunen, K. M., Greenwood, R., Powell, J. H., Leech, R., Hawkins, P. C., Bonnelle, V., et al. (2010). White matter damage and cognitive impairment after traumatic brain injury. Brain. doi: 10.1093/brain/awq347.
  19. Kraus, M. F., Susmaras, T., Caughlin, B. P., Walker, C. J., Sweeney, J. A., & Little, D. M. (2007). White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain, 130(Pt 10), 2508–2519.PubMedCrossRefGoogle Scholar
  20. Kumar, R., Gupta, R. K., Husain, M., Chaudhry, C., Srivastava, A., Saksena, S., et al. (2009). Comparative evaluation of corpus callosum DTI metrics in acute mild and moderate traumatic brain injury: its correlation with neuropsychometric tests. Brain Injury, 23(7), 675–685. doi: 10.1080/02699050903014915.PubMedCrossRefGoogle Scholar
  21. Lebel, C., Walker, L., Leemans, A., Phillips, L., & Beaulieu, C. (2008). Microstructural maturation of the human brain from childhood to adulthood. NeuroImage, 40(3), 1044–1055.Google Scholar
  22. Lenroot, R. K., Giedd, J. N. (2006). Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neuroscience & Biobehavioral Reviews, 30(6):718–29. doi: 10.1016/j.neubiorev.2006.06.001
  23. Levin, H. S., & Hanten, G. (2005). Executive functions after traumatic brain injury in children. Pediatric Neurology, 33(2), 79–93. doi: 10.1016/j.pediatrneurol.2005.02.002.PubMedCrossRefGoogle Scholar
  24. Levin, H. S., Wilde, E. A., Chu, Z., Yallampalli, R., Hanten, G. R., Li, X., et al. (2008). Diffusion tensor imaging in relation to cognitive and functional outcome of traumatic brain injury in children. The Journal of Head Trauma Rehabilitation, 23(4), 197–208. doi: 10.1097/01.HTR.0000327252.54128.7c.PubMedCrossRefGoogle Scholar
  25. Levin, H. S., Hanten, G., & Li, X. (2009). The relation of cognitive control to social outcome after paediatric TBI: Implications for intervention. Developmental Neurorehabilitation, 12(5), 320–329. doi: 10.3109/17518420903087673.PubMedCrossRefGoogle Scholar
  26. Levin, H. S., Wilde, E. A., Hanten, G., Li, X., Chu, Z. D., Vasquez, A. C., et al. (2011). Mental state attributions and diffusion tensor imaging after traumatic brain injury in children. Developmental Neuropsychology, 36(3), 273–287.Google Scholar
  27. Liston, C., Watts, R., Tottenham, N., Davidson, M. C., Niogi, S., Ulug, A. M., et al. (2006). Frontostriatal microstructure modulates efficient recruitment of cognitive control. Cerebral Cortex, 16(4), 553–560. doi: 10.1093/cercor/bhj003.PubMedCrossRefGoogle Scholar
  28. Marquez de la Plata, C. D., Yang, F. G., Wang, J. Y., Krishnan, K., Bakhadirov, K., Paliotta, C., et al. (2010). Diffusion tensor imaging biomarkers for traumatic axonal injury: analysis of three analytic methods. Journal of International Neuropsychological Society, 17(1), 24–35. doi: 10.1017/S1355617710001189.CrossRefGoogle Scholar
  29. Mayer, A.R., Ling, J., Mannell, M.V., Gasparovic, C., Phillips, J.P., Doezema, D., Reichard, R., and Yeo,R.A. (2010). A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology 74, 643–650.Google Scholar
  30. McCauley, S. R., Wilde, E. A., Bigler, E. D., Chu, Z., Yallampalli, R., Oni, M. B., et al. (2011). Diffusion tensor imaging of incentive effects in prospective memory after pediatric traumatic brain injury. Journal of Neurotrauma, 28(4), 503–516.Google Scholar
  31. Muetzel, R. L., Collins, P. F., Mueller, B. A. M., Schissel, A., Lim, K. O, & Luciana, M. (2008). The development of corpus callosum microstructure and associations with bimanual task performance in healthy adolescents. NeuroImage, 39(4), 1918–1925.Google Scholar
  32. Oni, M. B., Wilde, E. A., Bigler, E. D., McCauley, S. R., Wu, T. C., Yallampalli, R., et al. (2010). Diffusion tensor imaging analysis of frontal lobes in pediatric traumatic brain injury. Journal of Child Neurology, 25(8), 976–984.Google Scholar
  33. Perlbarg, V., Puybasset, L., Tollard, E., Lehericy, S., Benali, H., & Galanaud, D. (2009). Relation between brain lesion location and clinical outcome in patients with severe traumatic brain injury: A diffusion tensor imaging study using voxel-based approaches. Human Brain Mapping, 30(12), 3924–3933.PubMedCrossRefGoogle Scholar
  34. Salmond, C. H., Menon, D. K., Chatfield, D. A., Williams, G. B., Pena, A., Sahakian, B. J., et al. (2006). Diffusion tensor imaging in chronic head injury survivors: correlations with learning and memory indices. NeuroImage, 29(1), 117–124. doi: 10.1016/j.neuroimage.2005.07.012.PubMedCrossRefGoogle Scholar
  35. Salorio, C. F., Slomine, B. S., Grados, M. A., Vasa, R. A., Christensen, J. R., & Gerring, J. P. (2005). Neuroanatomic correlates of CVLT-C performance following pediatric traumatic brain injury. Journal of International Neuropsychological Society, 11(6), 686–696. doi: 10.1017/S1355617705050885.CrossRefGoogle Scholar
  36. Schmithorst, V. J., Wilke, M., Dardzinski, B. J., & Holland, S. K. (2002). Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: A cross-sectional diffusion-tensor MR imaging study. Radiology, 222(1), 212–218.Google Scholar
  37. Schonberger, M., Ponsford, J., Reutens, D., Beare, R., & O'Sullivan, R. (2009). The Relationship between age, injury severity, and MRI findings after traumatic brain injury. Journal of Neurotrauma, 26(12), 2157–2167. doi: 10.1089/neu.2009.0939.PubMedCrossRefGoogle Scholar
  38. Sidaros, A., Engberg, A. W., Sidaros, K., Liptrot, M. G., Herning, M., Petersen, P., et al. (2008). Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study. Brain, 131(Pt 2), 559–572. doi: 10.1093/brain/awm294.PubMedCrossRefGoogle Scholar
  39. Sidaros, A., Skimminge, A., Liptrot, M. G., Sidaros, K., Engberg, A. W., Herning, M., et al. (2009). Long-term global and regional brain volume changes following severe traumatic brain injury: a longitudinal study with clinical correlates. NeuroImage, 44(1), 1–8. doi: 10.1016/j.neuroimage.2008.08.030.PubMedCrossRefGoogle Scholar
  40. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3):143–155.Google Scholar
  41. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4), 1487–1505.Google Scholar
  42. Smith, S. M., Johansen-Berg, H., Jenkinson, M., Rueckert, D., Nichols, T. E., Miller, K. L., et al. (2007). Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. Nat Protoc, 2(3), 499-503.Google Scholar
  43. Stancin, T., Taylor, H. G., Thompson, G. H., Wade, S., Drotar, D., & Yeates, K. O. (1998). Acute psychosocial impact of pediatric orthopedic trauma with and without accompanying brain injuries. The Journal of Trauma, 45(6), 1031–1038.PubMedCrossRefGoogle Scholar
  44. Teasdale, G., & Jennett, B. (1974). Assessment of coma and impaired consciousness. A pratical scale. Lancet, 13(7872), 81–84.CrossRefGoogle Scholar
  45. Warner, M. A., Marquez de la Plata, C., Spence, J., Wang, J. Y., Harper, C., Moore, C., et al. (2010). Assessing spatial relationships between axonal integrity, regional brain volumes, and neuropsychological outcomes after traumatic axonal injury. Journal of Neurotrauma, 27(12), 2121–2130. doi: 10.1089/neu.2010.1429.PubMedCrossRefGoogle Scholar
  46. Warner, M. A., Youn, T. S., Davis, T., Chandra, A., Marquez de la Plata, C., Moore, C., et al. (2010). Regionally selective atrophy after traumatic axonal injury. Archives of Neurology, 67(11), 1336–1344. doi: 10.1001/archneurol.2010.149.PubMedCrossRefGoogle Scholar
  47. Weisskoff, R. M. (1996). Simple measurement of scanner stability for functional NMR imaging of activation in the brain. Magnetic Resonance in Medicine, 36(4), 643–645.PubMedCrossRefGoogle Scholar
  48. Wilde, E. A., Chu, Z., Bigler, E. D., Hunter, J. V., Fearing, M. A., Hanten, G., et al. (2006). Diffusion tensor imaging in the corpus callosum in children after moderate to severe traumatic brain injury. Journal of Neurotrauma, 23(10), 1412–1426.PubMedCrossRefGoogle Scholar
  49. Wilde, E. A., Ramos, M. A., Yallampalli, R., Bigler, E. D., McCauley, S. R., Chu, Z., et al. (2010). Diffusion tensor imaging of the cingulum bundle in children after traumatic brain injury. Developmental Neuropsychology, 35(3), 333–351.Google Scholar
  50. Wozniak, J. R., Krach, L., Ward, E., Mueller, B. A., Muetzel, R., Schnoebelen, S., et al. (2007). Neurocognitive and neuroimaging correlates of pediatric traumatic brain injury: a diffusion tensor imaging (DTI) study. Archives of Clinical Neuropsychology, 22(5), 555–568. doi: 10.1016/j.acn.2007.03.004.PubMedCrossRefGoogle Scholar
  51. Wu, T. C., Wilde, E. A., Bigler, E. D., Li, X., Merkley, T. L., Yallampalli, R., et al. (2010). Longitudinal Changes in the Corpus Callosum following Pediatric Traumatic Brain Injury. Developmental Neuroscience. doi: 10.1159/000317058.
  52. Xu, J., Rasmussen, I. A., Lagopoulos, J., & Haberg, A. (2007). Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging. Journal of Neurotrauma, 24(5), 753–765. doi: 10.1089/neu.2006.0208.PubMedCrossRefGoogle Scholar
  53. Yeates, K. O., Taylor, H. G., Drotar, D., Wade, S. L., Klein, S., Stancin, T., et al. (1997). Preinjury family environment as a determinant of recovery from traumatic brain injuries in school-age children. Journal of International Neuropsychological Society, 3(6), 617–630.Google Scholar
  54. Yuan, W., Holland, S. K., Schmithorst, V. J., Walz, N. C., Cecil, K. M., Jones, B. V., et al. (2007). Diffusion tensor MR imaging reveals persistent white matter alteration after traumatic brain injury experienced during early childhood. AJNR. American Journal of Neuroradiology, 28(10), 1919–1925.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Elisabeth A. Wilde
    • 1
    • 2
    • 3
  • Kareem W. Ayoub
    • 1
    • 4
  • Erin D. Bigler
    • 5
    • 6
    • 7
  • Zili D. Chu
    • 2
    • 8
  • Jill V. Hunter
    • 2
    • 8
  • Trevor C. Wu
    • 1
    • 5
  • Stephen R. McCauley
    • 1
    • 3
  • Harvey S. Levin
    • 1
    • 3
  1. 1.Physical Medicine and Rehabilitation Alliance, Baylor College of Medicine and the University of Texas-Houston Medical SchoolHoustonUSA
  2. 2.Department of RadiologyBaylor College of MedicineHoustonUSA
  3. 3.Department of NeurologyBaylor College of MedicineHoustonUSA
  4. 4.Department of BioengineeringRice UniversityHoustonUSA
  5. 5.Department of PsychologyBrigham Young UniversityProvoUSA
  6. 6.Department of NeuroscienceBrigham Young UniversityProvoUSA
  7. 7.Department of Psychiatry and the Utah Brain InstituteUniversity of UtahSalt Lake CityUSA
  8. 8.Department of Pediatric RadiologyTexas Children’s HospitalHoustonUSA

Personalised recommendations