Advertisement

Brain Imaging and Behavior

, Volume 5, Issue 4, pp 241–251 | Cite as

Cognitively preserved MS patients demonstrate functional differences in processing neutral and emotional faces

  • Margit Jehna
  • Christian Langkammer
  • Mirja Wallner-Blazek
  • Christa Neuper
  • Marisa Loitfelder
  • Stefan Ropele
  • Siegrid Fuchs
  • Michael Khalil
  • Aga Pluta-Fuerst
  • Franz Fazekas
  • Christian EnzingerEmail author
Original Research

Abstract

The ability to recognize emotional facial expressions is crucial to adequate social behavior. Previous studies have suggested deficits in emotion recognition in multiple sclerosis (MS). These deficits were accompanied by several confounders including cognitive or visual impairments, disease duration, and depression. In our study we used functional MRI (fMRI) to test for potential early adaptive changes in only mildly disabled MS patients performing an emotion recognition task including the facial expressions of the emotions anger, fear and disgust. Fifteen relapsing-remitting MS patients with a median Expanded Disability Status Scale (EDSS) score of 2 (range: 0–3.5) and 15 healthy controls (HC) matched for age, gender, and education underwent behavioral (BERT: behavioral emotion recognition test; BRB-N: Brief Repeatable Battery for neuropsychological tests, WCST: Wisconsin Card Sorting Test) and clinical assessments (BDI: Beck Depression Inventory). Conventional MRI at 3.0T served to assess whole-brain volume, white matter, gray matter, cerebrospinal fluid, and T2-lesion load; during fMRI, participants were confronted with neutral, scrambled, angry, disgusted, and fearful faces, and houses. In the absence of differences in cognitive performance and in the ability to accurately recognize distinct emotional facial expressions, MS patients demonstrated excess fMRI activations during facial recognition compared to HC. These differences concerned the posterior cingulate cortex (PCC) and precuneus for anger and disgust contrasted to neutral faces, and the occipital fusiform gyri and the anterior CC for neutral faces versus houses. This study provides first evidence for excess activation during processing of higher order visual stimuli of emotional content in the absence of emotional, visual or cognitive behavior abnormalities already in earlier stages of MS.

Keywords

Multiple sclerosis fMRI Emotion recognition Neural plasticity Precuneus 

Notes

Acknowledgment

We thank all the patients and controls who participated in this study, and Karin Brodtrager for her help with the acquisition of functional imaging data, and Franz Ebner, MD, for his infrastructural support.

Disclosure

MJ was supported by an unrestricted research grant from Merck-Serono. The sponsor did not have any influence on the acquisition, analysis, or interpretation of data.

Supplementary material

11682_2011_9128_MOESM1_ESM.doc (150 kb)
ESM 1 (DOC 149 kb)

References

  1. Adolphs, R. (2001). The neurobiology of social cognition. Current Opinion in Neurobiology, 11(2), 231–239.PubMedCrossRefGoogle Scholar
  2. Baas, D., Aleman, A., & Kahn, R. S. (2004). Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Research. Brain Research Reviews, 45(2), 96–103.PubMedCrossRefGoogle Scholar
  3. Banati, M., Sandor, J., Mike, A., Illes, E., Bors, L., Feldmann, A., et al. (2010). Social cognition and theory of mind in patients with relapsing-remitting multiple sclerosis. European Journal of Neurology, 17(3), 426–433.PubMedCrossRefGoogle Scholar
  4. Beatty, W. W., Goodkin, D. E., Monson, N., & Beatty, P. A. (1989). Cognitive disturbances in patients with relapsing remitting multiple sclerosis. Archives of Neurology, 46(10), 1113–1119.PubMedGoogle Scholar
  5. Beatty, W. W., Orbelo, D. M., Sorocco, K. H., & Ross, E. D. (2003). Comprehension of affective prosody in multiple sclerosis. Multiple Sclerosis, 9(2), 148–153.PubMedCrossRefGoogle Scholar
  6. Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 561–571.PubMedGoogle Scholar
  7. Benedict, R. H., Priore, R. L., Miller, C., Munschauer, F., & Jacobs, L. (2001). Personality disorder in multiple sclerosis correlates with cognitive impairment. The Journal of Neuropsychiatry and Clinical Neurosciences, 13(1), 70–76.PubMedCrossRefGoogle Scholar
  8. Calder, A. J., & Young, A. W. (2005). Understanding the recognition of facial identity and facial expression. Nature Reviews Neuroscience, 6(8), 641–651.PubMedCrossRefGoogle Scholar
  9. Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(Pt 3), 564–583.PubMedCrossRefGoogle Scholar
  10. Critchley, H. D., Daly, E., Phillips, M., Brammer, M., Bullmore, E., Williams, S., et al. (2000). Explicit and implicit neural mechanisms for processing of social information from facial expressions: a functional magnetic resonance imaging study. Human Brain Mapping, 9(2), 93–105.PubMedCrossRefGoogle Scholar
  11. Dineen, R. A., Vilisaar, J., Hlinka, J., Bradshaw, C. M., Morgan, P. S., Constantinescu, C. S., et al. (2009). Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain, 132(Pt 1), 239–249.PubMedGoogle Scholar
  12. Dohnel, K., Sommer, M., Ibach, B., Rothmayr, C., Meinhardt, J., & Hajak, G. (2008). Neural correlates of emotional working memory in patients with mild cognitive impairment. Neuropsychologia, 46(1), 37–48.PubMedCrossRefGoogle Scholar
  13. Duvernoy, H. M. (1999). The human brain: Surface, three-dimensional sectional anatomy with MRI, and blood supply (2nd, completely rev. and enlarged ed. edition ed.). Wien New York: Springer.Google Scholar
  14. Engell, A. D., Haxby, J. V., & Todorov, A. (2007). Implicit trustworthiness decisions: automatic coding of face properties in the human amygdala. Journal of Cognitive Neuroscience, 19(9), 1508–1519.PubMedCrossRefGoogle Scholar
  15. Feinstein, A. (2006). Mood disorders in multiple sclerosis and the effects on cognition. Journal of the Neurological Sciences, 245(1–2), 63–66.PubMedCrossRefGoogle Scholar
  16. Goekoop, R., Rombouts, S. A., Jonker, C., Hibbel, A., Knol, D. L., Truyen, L., et al. (2004). Challenging the cholinergic system in mild cognitive impairment: a pharmacological fMRI study. NeuroImage, 23(4), 1450–1459.PubMedCrossRefGoogle Scholar
  17. Goverover, Y., Chiaravalloti, N., & DeLuca, J. (2005). The relationship between self-awareness of neurobehavioral symptoms, cognitive functioning, and emotional symptoms in multiple sclerosis. Multiple Sclerosis, 11(2), 203–212.PubMedCrossRefGoogle Scholar
  18. Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19(1), 72–78.PubMedCrossRefGoogle Scholar
  19. Hall, J., Harris, J. M., Sprengelmeyer, R., Sprengelmeyer, A., Young, A. W., Santos, I. M., et al. (2004). Social cognition and face processing in schizophrenia. The British Journal of Psychiatry, 185, 169–170.PubMedCrossRefGoogle Scholar
  20. Heaton, R. K., Chelune, G. J., Talley, J. L., Kay, G. G., & Curtis, G. (1981). Wisconsin Card Sorting Test Manual—revised and expanded. Odessa, FL: 1993 by Psychological Assessment Resources, Inc.Google Scholar
  21. Henry, J. D., Phillips, L. H., Beatty, W. W., McDonald, S., Longley, W. A., Joscelyne, A., et al. (2009). Evidence for deficits in facial affect recognition and theory of mind in multiple sclerosis. Journal of the International Neuropsychological Society, 15(2), 277–285.PubMedCrossRefGoogle Scholar
  22. Jehna, M., Neuper, C., Petrovic, K., Wallner-Blazek, M., Schmidt, R., Fuchs, S., et al. (2010). An exploratory study on emotion recognition in patients with a clinically isolated syndrome and multiple sclerosis. Clinical Neurology and Neurosurgery, 112(6), 482–484.PubMedCrossRefGoogle Scholar
  23. Jehna, M., Neuper, C., Ischebeck, A., Loitfelder, M., Ropele, S., Langkammer, C., et al. (2011). The functional correlates of face perception and recognition of emotional facial expressions as evidenced by fMRI. Brain Research, 1393, 73–83.PubMedCrossRefGoogle Scholar
  24. Johnston, P. J., Katsikitis, M., & Carr, V. J. (2001). A generalised deficit can account for problems in facial emotion recognition in schizophrenia. Biological Psychology, 58(3), 203–227.PubMedCrossRefGoogle Scholar
  25. Johnston, P. J., Stojanov, W., Devir, H., & Schall, U. (2005). Functional MRI of facial emotion recognition deficits in schizophrenia and their electrophysiological correlates. The European Journal of Neuroscience, 22(5), 1221–1232.PubMedCrossRefGoogle Scholar
  26. Krause, M., Wendt, J., Dressel, A., Berneiser, J., Kessler, C., Hamm, A. O., et al. (2009). Prefrontal function associated with impaired emotion recognition in patients with multiple sclerosis. Behavioural Brain Research, 205(1), 280–285.PubMedCrossRefGoogle Scholar
  27. Kurtzke, J. F. (1983). Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology, 33(11), 1444–1452.PubMedGoogle Scholar
  28. Lazeron, R. H., Boringa, J. B., Schouten, M., Uitdehaag, B. M., Bergers, E., Lindeboom, J., et al. (2005). Brain atrophy and lesion load as explaining parameters for cognitive impairment in multiple sclerosis. Multiple Sclerosis, 11(5), 524–531.PubMedCrossRefGoogle Scholar
  29. Loitfelder, M., Fazekas, F., Petrovic, K., Fuchs, S., Ropele, S., Wallner-Blazek, M., et al. (2011). Reorganization in cognitive networks with progression of multiple sclerosis: insights from fMRI. Neurology, 76(6), 526–533.PubMedCrossRefGoogle Scholar
  30. Lublin, F. D., & Reingold, S. C. (1996). Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology, 46(4), 907–911.PubMedGoogle Scholar
  31. Lundqvist, D., Flykt, A., & Öhman, A. (1998). The Karolinska directed emotional faces—KDEF. On CD ROM from Department of Clinical Neuroscience. Psychology Section, Karolinska Institutet.Google Scholar
  32. Maddock, R. J., Garrett, A. S., & Buonocore, M. H. (2003). Posterior cingulate cortex activation by emotional words: fMRI evidence from a valence decision task. Human Brain Mapping, 18(1), 30–41.PubMedCrossRefGoogle Scholar
  33. Mainero, C., Caramia, F., Pozzilli, C., Pisani, A., Pestalozza, I., Borriello, G., et al. (2004). fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. NeuroImage, 21(3), 858–867.PubMedCrossRefGoogle Scholar
  34. Mainero, C., Pantano, P., Caramia, F., & Pozzilli, C. (2006). Brain reorganization during attention and memory tasks in multiple sclerosis: insights from functional MRI studies. Journal of the Neurological Sciences, 245(1–2), 93–98.PubMedCrossRefGoogle Scholar
  35. McDonald, W. I., Compston, A., Edan, G., Goodkin, D., Hartung, H. P., Lublin, F. D., et al. (2001). Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Annals of Neurology, 50(1), 121–127.PubMedCrossRefGoogle Scholar
  36. Meletti, S., Benuzzi, F., Cantalupo, G., Rubboli, G., Tassinari, C. A., & Nichelli, P. (2009). Facial emotion recognition impairment in chronic temporal lobe epilepsy. Epilepsia, 50(6), 1547–1559.PubMedCrossRefGoogle Scholar
  37. Mohr, D. C., & Cox, D. (2001). Multiple sclerosis: empirical literature for the clinical health psychologist. Journal of Clinical Psychology, 57(4), 479–499.PubMedCrossRefGoogle Scholar
  38. Namiki, C., Hirao, K., Yamada, M., Hanakawa, T., Fukuyama, H., Hayashi, T., et al. (2007). Impaired facial emotion recognition and reduced amygdalar volume in schizophrenia. Psychiatry Research, 156(1), 23–32.PubMedCrossRefGoogle Scholar
  39. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.PubMedCrossRefGoogle Scholar
  40. Passamonti, L., Cerasa, A., Liguori, M., Gioia, M. C., Valentino, P., Nistico, R., et al. (2009). Neurobiological mechanisms underlying emotional processing in relapsing-remitting multiple sclerosis. Brain, 132(12), 3380–3391.PubMedCrossRefGoogle Scholar
  41. Patti, F. (2009). Cognitive impairment in multiple sclerosis. Multiple Sclerosis, 15(1), 2–8.PubMedCrossRefGoogle Scholar
  42. Phillips, L. H., Henry, J. D., Scott, C., Summers, F., Whyte, M., & Cook, M. (2011). Specific impairments of emotion perception in multiple sclerosis. Neuropsychology, 25(1), 131–136.PubMedCrossRefGoogle Scholar
  43. Plummer, D. L. (1992). DispImage: a display and analysis tool for medical images. Revista di Neuroradiologica, 5, 489–495.Google Scholar
  44. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682.PubMedCrossRefGoogle Scholar
  45. Rao, S. M., Leo, G. J., Bernardin, L., & Unverzagt, F. (1991). Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology, 41(5), 685–691.PubMedGoogle Scholar
  46. Reddy, H., Narayanan, S., Woolrich, M., Mitsumori, T., Lapierre, Y., Arnold, D. L., et al. (2002). Functional brain reorganization for hand movement in patients with multiple sclerosis: defining distinct effects of injury and disability. Brain, 125(Pt 12), 2646–2657.PubMedCrossRefGoogle Scholar
  47. Roca, M., Torralva, T., Meli, F., Fiol, M., Calcagno, M., Carpintiero, S., et al. (2008). Cognitive deficits in multiple sclerosis correlate with changes in fronto-subcortical tracts. Multiple Sclerosis, 14(3), 364–369.PubMedCrossRefGoogle Scholar
  48. Rocca, M. A., & Filippi, M. (2006). Functional MRI to study brain plasticity in clinical neurology. Neurological Sciences, 27(Suppl 1), S24–S26.PubMedCrossRefGoogle Scholar
  49. Rocca, M. A., Pagani, E., Absinta, M., Valsasina, P., Falini, A., Scotti, G., et al. (2007). Altered functional and structural connectivities in patients with MS: a 3-T study. Neurology, 69(23), 2136–2145.PubMedCrossRefGoogle Scholar
  50. Rocca, M. A., Absinta, M., Ghezzi, A., Moiola, L., Comi, G., & Filippi, M. (2009). Is a preserved functional reserve a mechanism limiting clinical impairment in pediatric MS patients? Human Brain Mapping, 30(9), 2844–2851.PubMedCrossRefGoogle Scholar
  51. Sachs, G., Steger-Wuchse, D., Kryspin-Exner, I., Gur, R. C., & Katschnig, H. (2004). Facial recognition deficits and cognition in schizophrenia. Schizophrenia Research, 68(1), 27–35.PubMedCrossRefGoogle Scholar
  52. Scherer, P., Baum, K., Bauer, H., Gohler, H., & Miltenburger, C. (2004). Normalization of the Brief Repeatable Battery of Neuropsychological tests (BRB-N) for German-speaking regions. Application in relapsing-remitting and secondary progressive multiple sclerosis patients. Nervenarzt, 75(10), 984–990.PubMedCrossRefGoogle Scholar
  53. Schmahmann, J. D., Doyon, J., McDonald, D., Holmes, C., Lavoie, K., Hurwitz, A. S., et al. (1999). Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. NeuroImage, 10(3 Pt 1), 233–260.PubMedCrossRefGoogle Scholar
  54. Smith, S. M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P. M., Federico, A., et al. (2002). Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. NeuroImage, 17(1), 479–489.PubMedCrossRefGoogle Scholar
  55. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl 1), S208–S219.PubMedCrossRefGoogle Scholar
  56. Smith, A. M., Walker, L. A., Freedman, M. S., DeMeulemeester, C., Hogan, M. J., & Cameron, I. (2009). fMRI investigation of disinhibition in cognitively impaired patients with multiple sclerosis. Journal of the Neurological Sciences, 281(1–2), 58–63.PubMedCrossRefGoogle Scholar
  57. Sprengelmeyer, R., Rausch, M., Eysel, U. T., & Przuntek, H. (1998). Neural structures associated with recognition of facial expressions of basic emotions. Proceedings of the Royal Society - Biological Sciences, 265(1409), 1927–1931.PubMedCrossRefGoogle Scholar
  58. Sprengelmeyer, R., Young, A. W., Mahn, K., Schroeder, U., Woitalla, D., Buttner, T., et al. (2003). Facial expression recognition in people with medicated and unmedicated Parkinson’s disease. Neuropsychologia, 41(8), 1047–1057.PubMedCrossRefGoogle Scholar
  59. Sprengelmeyer, R., Schroeder, U., Young, A. W., & Epplen, J. T. (2006). Disgust in pre-clinical Huntington’s disease: a longitudinal study. Neuropsychologia, 44(4), 518–533.PubMedCrossRefGoogle Scholar
  60. Staffen, W., Mair, A., Zauner, H., Unterrainer, J., Niederhofer, H., Kutzelnigg, A., et al. (2002). Cognitive function and fMRI in patients with multiple sclerosis: evidence for compensatory cortical activation during an attention task. Brain, 125(Pt 6), 1275–1282.PubMedCrossRefGoogle Scholar
  61. Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015–2028.PubMedCrossRefGoogle Scholar
  62. Summers, M., Swanton, J., Fernando, K., Dalton, C., Miller, D. H., Cipolotti, L., et al. (2008). Cognitive impairment in multiple sclerosis can be predicted by imaging early in the disease. Journal of Neurology, Neurosurgery, and Psychiatry, 79(8), 955–958.PubMedCrossRefGoogle Scholar
  63. Sumowski, J. F., Wylie, G. R., Deluca, J., & Chiaravalloti, N. (2009). Intellectual enrichment is linked to cerebral efficiency in multiple sclerosis: functional magnetic resonance imaging evidence for cognitive reserve. Brain, 133(2), 362–374.PubMedCrossRefGoogle Scholar
  64. Sweet, L. H., Rao, S. M., Primeau, M., Durgerian, S., & Cohen, R. A. (2006). Functional magnetic resonance imaging response to increased verbal working memory demands among patients with multiple sclerosis. Human Brain Mapping, 27(1), 28–36.PubMedCrossRefGoogle Scholar
  65. Thielscher, A., & Pessoa, L. (2007). Neural correlates of perceptual choice and decision making during fear-disgust discrimination. The Journal of Neuroscience, 27(11), 2908–2917.PubMedCrossRefGoogle Scholar
  66. Turetsky, B. I., Kohler, C. G., Indersmitten, T., Bhati, M. T., Charbonnier, D., & Gur, R. C. (2007). Facial emotion recognition in schizophrenia: when and why does it go awry? Schizophrenia Research, 94(1–3), 253–263.PubMedCrossRefGoogle Scholar
  67. Vogt, B. A., Vogt, L., & Laureys, S. (2006). Cytology and functionally correlated circuits of human posterior cingulate areas. NeuroImage, 29(2), 452–466.PubMedCrossRefGoogle Scholar
  68. Wegner, C., Filippi, M., Korteweg, T., Beckmann, C., Ciccarelli, O., De Stefano, N., et al. (2008). Relating functional changes during hand movement to clinical parameters in patients with multiple sclerosis in a multi-centre fMRI study. European Journal of Neurology, 15(2), 113–122.PubMedCrossRefGoogle Scholar
  69. Woolrich, M. W., Behrens, T. E., Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2004). Multilevel linear modelling for FMRI group analysis using Bayesian inference. NeuroImage, 21(4), 1732–1747.PubMedCrossRefGoogle Scholar
  70. Wright, C. I., Fischer, H., Whalen, P. J., McInerney, S. C., Shin, L. M., & Rauch, S. L. (2001). Differential prefrontal cortex and amygdala habituation to repeatedly presented emotional stimuli. Neuroreport, 12(2), 379–383.PubMedCrossRefGoogle Scholar
  71. Zald, D. H., & Pardo, J. V. (2002). The neural correlates of aversive auditory stimulation. NeuroImage, 16(3 Pt 1), 746–753.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Margit Jehna
    • 1
    • 2
  • Christian Langkammer
    • 1
  • Mirja Wallner-Blazek
    • 1
  • Christa Neuper
    • 2
  • Marisa Loitfelder
    • 1
    • 2
  • Stefan Ropele
    • 1
  • Siegrid Fuchs
    • 1
  • Michael Khalil
    • 1
  • Aga Pluta-Fuerst
    • 1
  • Franz Fazekas
    • 1
  • Christian Enzinger
    • 1
    • 3
    Email author
  1. 1.Department of NeurologyMedical University of GrazGrazAustria
  2. 2.Institute of PsychologyKarl-Franzens-University GrazGrazAustria
  3. 3.Division of Neuroradiology, Department of RadiologyMedical University of GrazGrazAustria

Personalised recommendations