Advertisement

Brain Imaging and Behavior

, Volume 5, Issue 1, pp 45–51 | Cite as

Alternation learning in pathological gamblers: an fMRI Study

  • Pinhas N. Dannon
  • Tammar Kushnir
  • Anat Aizer
  • Ruth Gross-Isseroff
  • Moshe Kotler
  • David Manor
Original Research

Abstract

Objectives

We have previously reported that pathological gamblers have impaired performance on the Stroop color word naming task, go-no-go task and speed accuracy tradeoff performance, tasks used to assess executive function and interference control. The aim of the present neuroimaging study was to explore the relationship between frontal cortex function and gambling severity in pathological gamblers.

Materials and methods

Functional MRI (fMRI) was used to estimate brain activity of ten male medication-free pathological gamblers during performance of an alternation learning task. Performance of this task has been shown to depend on the function of regions in the frontal cortex.

Results

The executive functions needed to perform the alternation learning task were expressed as brain activation in lateral and medial frontal as well as parietal and occipital regions. By correlating the level of local brain activation to task performance, parietal regions and lateral frontal and orbitofrontal regions were demonstrated. A higher score in SOGS was associated with intrusion on the task-specific activation in the left hemisphere, to some extant in parietal regions and even more pronouncedly in left frontal and orbitofrontal regions.

Conclusions

Our preliminary data suggests that pathological gambling may be characterized by specific neuro-cognitive changes related to the frontal cortex.

Keywords

Pathological gambling Alternation learning task Orbitofrontal cortex Functional MRI 

Notes

Declaration of interests

None

References

  1. Bechara, A. (2001). Neurobiology of decision-making: risk and reward. Seminars in Clinical Neuropsychiatry, 6(3), 205–216.CrossRefPubMedGoogle Scholar
  2. Bechara, A. (2003). Risky business: emotion, decision-making, and addiction. Journal of Gambling Studies, 19(1), 23–51.CrossRefPubMedGoogle Scholar
  3. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1–3), 7–15.CrossRefPubMedGoogle Scholar
  4. Bechara, A., & Damasio, H. (2002). Decision-making and addiction (part I): impaired Activation of somatic states in substance dependent individuals when pondering Decisions with negative future consequences. Neuropsychologia, 40(10), 1675–1689.CrossRefPubMedGoogle Scholar
  5. Bechara, A., Dolan, S., & Hindes, A. (2002). Decision-making and addiction (part II): myopia for the future or hypersensitivity to reward? Neuropsychologia, 40(10), 1690–1705.CrossRefPubMedGoogle Scholar
  6. Benhsain, K., Taillefer, A., & Ladouceur, R. (2004). Awareness of independence of events and erroneous perceptions while gambling. Addictive Behaviors, 29(2), 399–404.CrossRefPubMedGoogle Scholar
  7. Blaszczynki, A. (1999). Pathological gambling and obsessive- compulsive spectrum disorders. Psychological Reports, 84, 107–113.CrossRefGoogle Scholar
  8. Bohn, A. S. C., Deckersback, T., Keuthen, N. J., Jenike, M. A., Tuschen-Caffier, B., & Wilhem, S. (2005). Visuospacial abilities, memory, and executive functioning in trichotillomania and obsessive-compulsive disorder. Psychology Press, 27, 385–389.Google Scholar
  9. Brand, M., Fujiwara, E., Borsutzky, S., Kalbe, E., Kessler, J., & Markowitsch, H. J. (2005a). Decision-making deficits of korsakoff patients in a new gambling task with explicit rules: associations with executive functions. Neuropsychology, 19(3), 267–277.CrossRefGoogle Scholar
  10. Brand, M. K. E., Labudda, K., Fujiwara, E., Kessler, J., & Markowitsch, H. J. (2005b). Decision-making impairments in patients with pathological gambling. Psychiatry Research, 133, 91–99.CrossRefGoogle Scholar
  11. Calhoun, V. D., Altschul, D., McGinty, V., et al. (2004). Alcohol intoxication effects on visual perception: An fMRI study. Human Brain Mapping, 21, 15–25.Google Scholar
  12. Cavedini, P., Riboldi, G., Keller, R., D'Annucci, A., & Bellodi, L. (2002). Frontal lobe dysfunction in pathological gambling patients. Biological Psychiatry, 51(4), 334–341.CrossRefPubMedGoogle Scholar
  13. Clark, L., Lawrence, A. J., Astley-Jones, F., et al. (2009). Gambling near misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron, 61, 481–490.CrossRefPubMedGoogle Scholar
  14. Dannon, P. N., Lowengrub, K., Aizer, A., & Kotler, M. (2006). Pathological gambling: Comorbid psychiatric diagnosis in patients and their families. Israel Journal of Psychiatry & related Sciences, 43, 88–92.Google Scholar
  15. de Ruiter, M. B., Veltman, D. J., Goudriaan, A. E., et al. (2009). Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology, 34, 1027–1038.CrossRefPubMedGoogle Scholar
  16. Fellows, L. K., & Farah, M. J. (2005). Different underlying impairments in decision making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15(1), 58–63.CrossRefPubMedGoogle Scholar
  17. Frost, R. O., Meagher, B. M., & Riskind, J. H. (2001). Obsessive-compulsive features in pathological lottery and scratch-ticket gamblers. Journal of Gambling Studies, 17(1), 5–19.CrossRefPubMedGoogle Scholar
  18. Gold JM, B. K., Randolph, C., Goldberg, T. E., & Weinberger, D. R. (1996). PET validation of a novel prefrontal task: delayed response alternation. Neuropsychology, 10, 3–10.CrossRefGoogle Scholar
  19. Goudriaan, A. E., Oosterlaan, J; De Beurs, E; Van den Brink, W. (2006).Neurocognitive deficits in pathological gambling and related disorders. Paperpresented at the European Congress of Neuropsychiatry, ParisGoogle Scholar
  20. Goudriaan AE, de Ruiter MB, van den Brink W, et al. (2010). Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addict Biol (in press).Google Scholar
  21. Gross-Isseroff, R., Sasson, Y., Voet, H., Hendler, T., Luca-Haimovici, K., Kandel-Sussman, H., et al. (1996). Alternation learning in obsessive-compulsive disorder. Biological Psychiatry, 39(8), 733–738.CrossRefPubMedGoogle Scholar
  22. Gross-Isseroff, R., Kushnir, T., Hermesh, H., Marom, S., Weizman, A., & Manor, D. (2010). Alteration learning in social anxiety disorder: an fMRI study. World Journal of Biological Psychiatry, 11(2 Pt 2), 352–6.CrossRefPubMedGoogle Scholar
  23. Hewig, J., Kretschmer, N., Trippe, R. H., et al. (2010). Hypersensitivity to reward in problem gamblers. Biological Psychiatry, 67, 781–783.CrossRefPubMedGoogle Scholar
  24. Hollander, E., Buchalter, A. J., & DeCaria, C. M. (2000). Pathological gambling. The Psychiatric Clinics of North America, 23(3), 629–642.CrossRefPubMedGoogle Scholar
  25. Hollander, E., & Wong, C. M. (1995). Obsessive-compulsive spectrum disorders. The Journal of Clinical Psychiatry, 56(Suppl 4), 3–6. discussion 53–55.PubMedGoogle Scholar
  26. Iancu, I., Lowengrub, K., Dembinsky, Y., Kotler, M., & Dannon, P. N. (2008). Pathological Gambling: An update of neurophysiology and pharmacotherapy. CNS Drugs, 22(2), 123–38.CrossRefPubMedGoogle Scholar
  27. Joukhador, J., Blaszczynski, A., & Maccallum, F. (2004). Superstitious beliefs in gambling among problem and non-problem gamblers: preliminary data. Journal of Gambling Studies, 20(2), 171–180.CrossRefPubMedGoogle Scholar
  28. Kertzman, S., Lowengrub, K., Aizer, A., Nahum, Z. B., Kotler, M., & Dannon, P. N. (2006). Stroop performance in pathological gamblers. Psychiatry Research, 142(1), 1–10.CrossRefPubMedGoogle Scholar
  29. Kerzman, S., Lowengrub, K., Aizer, A., Veinder, M., Kotler, M., & Dannon, P. N. (2008). Go-no-go performance in pathological gamblers. Psychiatry Research, 161, 1–10.CrossRefGoogle Scholar
  30. Kerzman, S., Vishne, T., Veinder, M., Aizer, A., Kotler, M., & Dannon, P. N. (2010). Speed accuracy trade off in decision making performance in pathological gamblers. European Addiction Research, 16, 23–30.CrossRefGoogle Scholar
  31. Lesieur, H. R., & Blume, S. B. (1987). The South Oaks Gambling Screen (SOGS): a new instrument for the identification of pathological gamblers. The American Journal of Psychiatry, 144, 1184–8.PubMedGoogle Scholar
  32. Miedl, S. F., Fehr, T., Meyer, G., et al. (2010). Neurobiological correlates of problem gambling in a quasi-realistic blackjack scenario as revealed by fMRI. Psychiatry Research, 181, 165–173.CrossRefPubMedGoogle Scholar
  33. Petry, N. M., & Casarella, T. (1999). Excessive discounting of delayed rewards in substance abusers with gambling problems. Drug and Alcohol Dependence, 56(1), 25–32.CrossRefPubMedGoogle Scholar
  34. Potenza, M. N., Leung, H. C., Blumberg, H. P., Peterson, B. S., Fulbright, R. K., Lacadie, C. M., et al. (2003). An FMRI Stroop task study of ventromedial prefrontal cortical function in pathological gamblers. The American Journal of Psychiatry, 160(11), 1990–1994.CrossRefPubMedGoogle Scholar
  35. Reuter, J., Raedler, T., Rose, M., Hand, I., Glascher, J., & Buchel, C. (2005). Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nature Neuroscience, 8(2), 147–148.CrossRefPubMedGoogle Scholar
  36. Rugle, L., & Melamed, L. (1993). Neuropsychological assessment of attention problems in pathological gamblers. The Journal of Nervous and Mental Disease, 181(2), 107–112.CrossRefPubMedGoogle Scholar
  37. Shaffer, H. J., Hall, M. N., & Vander Bilt, J. (1999). Estimating the prevalence of disorder gambling behavior in the United States and Canada: a research synthesis. American Journal of Public Health, 89, 1369–1376.CrossRefPubMedGoogle Scholar
  38. Smith, A. T., Singh, K. D., Blasters, J. H. (2007). A comment on the severity of the effects on non-white noise in fMRI time series. Neuroimage 36, 282–288.Google Scholar
  39. Specker, S. M., Carlson, G. A., Christenson, G. A., & Marcotte, M. (1995). Impulse control disorders and attention deficit disorder in pathological gamblers. Annals of Clinical Psychiatry, 7(4), 175–179.CrossRefPubMedGoogle Scholar
  40. Tamminga, C. A., & Nestler, E. J. (2006). Pathological gambling: focusing on the addiction, not the activity. The American Journal of Psychiatry, 163(2), 180–18 1.CrossRefPubMedGoogle Scholar
  41. Toneatto, T. (1999). Cognitive psychopathology of problem gambling. Substance Use & Misuse, 34(11), 1593–1604.CrossRefGoogle Scholar
  42. van Holst, R. J., Brink, W., Dick, J. V., & Goudriaan, A. E. (2010). Brain Imaging Studies in Pathological Gambling. Current Psychiatry Reports, 12, 418–25.CrossRefPubMedGoogle Scholar
  43. Whitney, K. A., Fastenau, P. S., Evans, J. D., & Lysaker, P. H. (2004). Comparative neuropsychological function in obsessive-compulsive disorder and schizophrenia with and without obsessive-compulsive symptoms. Schizophrenia Research, 69(1), 75–83.CrossRefPubMedGoogle Scholar
  44. Zohar, J., Hermesh, H., Weizman, A., Voet, H., & Gross-Isseroff, R. (1999). Orbitofrontal cortex dysfunction in obsessive-compulsive disorder? I. Alternation learning in obsessive-compulsive disorder: male-female comparisons. European Neuropsychopharmacology, 9(5), 407–413.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Pinhas N. Dannon
    • 1
    • 2
  • Tammar Kushnir
    • 2
    • 3
  • Anat Aizer
    • 2
  • Ruth Gross-Isseroff
    • 4
  • Moshe Kotler
    • 1
    • 2
  • David Manor
    • 3
    • 5
  1. 1.Beer Yaakov Mental Health CenterBeer YaakovIsrael
  2. 2.Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.Department of Diagnostic Imaging, MRI UnitThe Chaim Sheba Medical CenterTel HashomerIsrael
  4. 4.Geha Mental Health CenterPetach TikvaIsrael
  5. 5.Faculty of SciencesUniversity of HaifaHaifaIsrael

Personalised recommendations