Brain Imaging and Behavior

, Volume 4, Issue 3–4, pp 256–269

Cognitive reserve and brain volumes in pediatric acute lymphoblastic leukemia

  • Shelli R. Kesler
  • Hiroko Tanaka
  • Della Koovakkattu
Original Research


Acute lymphoblastic leukemia (ALL) is associated with long-term, progressive cognitive deficits and white matter injury. We measured global and regional white and gray matter as well as cognitive function and examined relationships between these variables and cognitive reserve, as indicated by maternal education level, in 28 young survivors of ALL and 31 healthy controls. Results indicated significantly reduced white matter volumes and cognitive testing scores in the ALL group compared to controls. Maternal education was inversely related to both global and regional white matter and directly related to gray matter in ALL and was directly related to both gray and white matter in controls, consistent with the cognitive reserve hypothesis. Cognitive performance was associated with different brain regions in ALL compared to controls. Maternal education was significantly positively correlated with working and verbal memory in ALL as well as processing speed and verbal memory in controls, improving models of cognitive outcome over medical and/or demographic predictors. Our findings suggest that cognitive reserve may be an important factor in brain injury and cognitive outcome in ALL. Additionally, children with ALL may experience some neural reorganization related to cognitive outcome.


Leukemia Neuroimaging MRI Brain volumetrics Cognitive reserve Maternal education 


  1. Allen, D. N., Knatz, D. T., & Mayfield, J. (2006). Validity of the Children’s Category Test-Level 1 in a clinical sample with heterogeneous forms of brain dysfunction. Archives of Clinical Neuropsychology, 21(7), 711–720.CrossRefPubMedGoogle Scholar
  2. Allen, D. N., Caron, J. E., Duke, L. A., & Goldstein, G. (2007). Sensitivity of the Halstead Category Test factor scores to brain damage. The Clinical Neuropsychologist, 21(4), 638–652.CrossRefPubMedGoogle Scholar
  3. Aukema, E. J., Caan, M. W., Oudhuis, N., Majoie, C. B., Vos, F. M., Reneman, L., et al. (2009). White matter fractional anisotropy correlates with speed of processing and motor speed in young childhood cancer survivors. International Journal of Radiation Oncology, Biology, Physics, 74(3), 837–843.PubMedGoogle Scholar
  4. Bartres-Faz, D., Sole-Padulles, C., Junque, C., Rami, L., Bosch, B., Bargallo, N., et al. (2009). Interactions of cognitive reserve with regional brain anatomy and brain function during a working memory task in healthy elders. Biological Psychology, 80(2), 256–259.CrossRefPubMedGoogle Scholar
  5. Bosnell, R., Giorgio, A., & Johansen-Berg, H. (2008). Imaging white matter diffusion changes with development and recovery from brain injury. Developmental Neurorehabilitation, 11(3), 174–186.CrossRefPubMedGoogle Scholar
  6. Brant, A. M., Haberstick, B. C., Corley, R. P., Wadsworth, S. J., DeFries, J. C., & Hewitt, J. K. (2009). The developmental etiology of high IQ. Behavior Genetics, 39(4), 393–405.CrossRefPubMedGoogle Scholar
  7. Brown, R. T., Madan-Swain, A., Pais, R., Lambert, R. G., Sexson, S., & Ragab, A. (1992). Chemotherapy for acute lymphocytic leukemia: cognitive and academic sequelae. Jornal de Pediatria, 121(6), 885–889.Google Scholar
  8. Buizer, A. I., de Sonneville, L. M. J., van den Heuvel-Eibrink, M. M., & Veerman, A. J. P. (2005). Chemotherapy and attentional dysfunction in survivors of childhood acute lymphoblastic leukemia: effect of treatment intensity. Pediatric Blood & Cancer, 45(3), 281–290.CrossRefGoogle Scholar
  9. Buizer, A. I., de Sonneville, L. M., & Veerman, A. J. (2009). Effects of chemotherapy on neurocognitive function in children with acute lymphoblastic leukemia: a critical review of the literature. Pediatric Blood & Cancer, 52(4), 447–454.CrossRefGoogle Scholar
  10. Butler, R. W., Copeland, D. R., Fairclough, D. L., Mulhern, R. K., Katz, E. R., Kazak, A. E., et al. (2008). A multicenter, randomized clinical trial of a cognitive remediation program for childhood survivors of a pediatric malignancy. Journal of Consulting and Clinical Psychology, 76(3), 367–378.CrossRefPubMedGoogle Scholar
  11. Campbell, L. K., Scaduto, M., Van Slyke, D., Niarhos, F., Whitlock, J. A., & Compas, B. E. (2009). Executive function, coping, and behavior in survivors of childhood acute lymphocytic leukemia. Journal of Pediatric Psychology, 34(3), 317–327.CrossRefPubMedGoogle Scholar
  12. Carey, M. E., Haut, M. W., Reminger, S. L., Hutter, J. J., Theilmann, R., & Kaemingk, K. L. (2008). Reduced frontal white matter volume in long-term childhood leukemia survivors: a voxel-based morphometry study. AJNR. American Journal of Neuroradiology, 29(4), 792–797.CrossRefPubMedGoogle Scholar
  13. Chiang, M. C., Barysheva, M., Shattuck, D. W., Lee, A. D., Madsen, S. K., Avedissian, C., et al. (2009). Genetics of brain fiber architecture and intellectual performance. The Journal of Neuroscience, 29(7), 2212–2224.CrossRefPubMedGoogle Scholar
  14. Chu, W. C., Chik, K. W., Chan, Y. L., Yeung, D. K., Roebuck, D. J., Howard, R. G., et al. (2003). White matter and cerebral metabolite changes in children undergoing treatment for acute lymphoblastic leukemia: longitudinal study with MR imaging and 1H MR spectroscopy. Radiology, 229(3), 659–669.CrossRefPubMedGoogle Scholar
  15. Cohen, J. (1998). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Earlbaum Associates.Google Scholar
  16. Colarusso, R., & Hammill, D. (2003). Motor-free visual perception test 3rd edition manual. Novato: Academic Therapy.Google Scholar
  17. Davis-Kean, P. E. (2005). The influence of parent education and family income on child achievement: the indirect role of parental expectations and the home environment. Journal of Family Psychology, 19(2), 294–304.CrossRefPubMedGoogle Scholar
  18. Deary, I. J., Johnson, W., & Houlihan, L. M. (2009). Genetic foundations of human intelligence. Human Genetics, 126(1), 215–232.CrossRefPubMedGoogle Scholar
  19. Dellani, P. R., Eder, S., Gawehn, J., Vucurevic, G., Fellgiebel, A., Muller, M. J., et al. (2008). Late structural alterations of cerebral white matter in long-term survivors of childhood leukemia. Journal of Magnetic Resonance Imaging, 27(6), 1250–1255.CrossRefPubMedGoogle Scholar
  20. Desai, S., & Alva, S. (1998). Maternal education and child health: is there a strong causal relationship? Demography, 35(1), 71–81.CrossRefPubMedGoogle Scholar
  21. DiStefano, C., Zhu, M., & Mindrila, D. (2009). Understanding and using factor scores: considerations for the applied researcher. Practical Assessment, Research and Evaluation, 14(20), 1–11.Google Scholar
  22. Draganski, B., & May, A. (2008). Training-induced structural changes in the adult human brain. Behavioural Brain Research, 192(1), 137–142.CrossRefPubMedGoogle Scholar
  23. Farmer, J. E., Kanne, S. M., Haut, J. S., Williams, J., Johnstone, B., & Kirk, K. (2002). Memory functioning following traumatic brain injury in children with premorbid learning problems. Developmental Neuropsychology, 22(2), 455–469.CrossRefPubMedGoogle Scholar
  24. Fay, T. B., Yeates, K. O., Taylor, H. G., Bangert, B., Dietrich, A., Nuss, K. E., et al. (2010). Cognitive reserve as a moderator of postconcussive symptoms in children with complicated and uncomplicated mild traumatic brain injury. Journal of the International Neuropsychological Society, 16(1), 94–105.CrossRefPubMedGoogle Scholar
  25. Ficek, K., Blamek, S., Sygula, D., Miszczyk, L., Sonta-Jakimczyk, D., & Tarnawski, R. (2010). Evaluation of the late effects of CNS prophylactic treatment in childhood acute lymphoblastic leukemia (ALL) using magnetic resonance spectroscopy. Acta Neurochirurgica. Supplementum, 106, 195–197.CrossRefGoogle Scholar
  26. Friston, K. J., Ashburner, J. T., Kiebel, S. J., Nichols, T. E., & Penny, W. D. (2007). Statistical parametric mapping: The analysis of functional brain images. San Francisco: Elsevier Academic.Google Scholar
  27. Fritsch, T., McClendon, M. J., Smyth, K. A., Lerner, A. J., Friedland, R. P., & Larsen, J. D. (2007). Cognitive functioning in healthy aging: the role of reserve and lifestyle factors early in life. The Gerontologist, 47(3), 307–322.PubMedGoogle Scholar
  28. Gale, S. D., & Prigatano, G. P. (2010). Deep white matter volume loss and social reintegration after traumatic brain injury in children. The Journal of Head Trauma Rehabilitation, 25(1), 15–22.CrossRefPubMedGoogle Scholar
  29. Giedd, J. N., Lalonde, F. M., Celano, M. J., White, S. L., Wallace, G. L., Lee, N. R., et al. (2009). Anatomical brain magnetic resonance imaging of typically developing children and adolescents. Journal of the American Academy of Child and Adolescent Psychiatry, 48(5), 465–470.CrossRefPubMedGoogle Scholar
  30. Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage, 14(1 Pt 1), 21–36.CrossRefPubMedGoogle Scholar
  31. Grahn, J. A., Parkinson, J. A., & Owen, A. M. (2008). The cognitive functions of the caudate nucleus. Progress in Neurobiology, 86(3), 141–155.CrossRefPubMedGoogle Scholar
  32. Gray, J. R., & Thompson, P. M. (2004). Neurobiology of intelligence: science and ethics. Nature Reviews. Neuroscience, 5(6), 471–482.CrossRefPubMedGoogle Scholar
  33. Hack, M., Taylor, H. G., Drotar, D., Schluchter, M., Cartar, L., Wilson-Costello, D., et al. (2005). Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight children at school age. Pediatrics, 116(2), 333–341.CrossRefPubMedGoogle Scholar
  34. Hall, C. B., Lipton, R. B., Sliwinski, M., Katz, M. J., Derby, C. A., & Verghese, J. (2009). Cognitive activities delay onset of memory decline in persons who develop dementia. Neurology, 73(5), 356–361.CrossRefPubMedGoogle Scholar
  35. Hammer, C. S., Farkas, G., & Maczuga, S. (2010). The language and literacy development of Head Start children: a study using the Family and Child Experiences Survey database. Language, Speech, and Hearing Services in Schools, 41(1), 70–83.CrossRefPubMedGoogle Scholar
  36. Harila, M. J., Winqvist, S., Lanning, M., Bloigu, R., & Harila-Saari, A. H. (2009). Progressive neurocognitive impairment in young adult survivors of childhood acute lymphoblastic leukemia. Pediatric Blood & Cancer, 53(2), 156–161.CrossRefGoogle Scholar
  37. Haut, M., Moran, M., Lancaster, M., Kuwabara, H., Parsons, M., & Puce, A. (2007). White matter correlates of cognitive capacity studied with diffusion tensor imaging: implications for cognitive reserve. Brain Imaging and Behavior, 1(3), 83–92. doi:10.1007/s11682-007-9008-x.CrossRefGoogle Scholar
  38. Jansen, N. C., Kingma, A., Schuitema, A., Bouma, A., Veerman, A. J., & Kamps, W. A. (2008). Neuropsychological outcome in chemotherapy-only-treated children with acute lymphoblastic leukemia. Journal of Clinical Oncology, 26(18), 3025–3030.CrossRefPubMedGoogle Scholar
  39. Janzen, L. A., & Spiegler, B. J. (2008). Neurodevelopmental sequelae of pediatric acute lymphoblastic leukemia and its treatment. Developmental Disabilities Research Reviews, 14(3), 185–195.CrossRefPubMedGoogle Scholar
  40. Kaplan, R. F., Cohen, R. A., Moscufo, N., Guttmann, C., Chasman, J., Buttaro, M., Hall, C. H., & Wolfson, L. (2009). Demographic and biological influences on cognitive reserve. Journal of Clinical and Experimental Neuropsychology, 1–9.Google Scholar
  41. Kesler, S. R., Hopkins, R. O., Blatter, D. D., Edge-Booth, H., & Bigler, E. D. (2001). Verbal memory deficits associated with fornix atrophy in carbon monoxide poisoning. Journal of the International Neuropsychological Society, 7(5), 640–646.CrossRefPubMedGoogle Scholar
  42. Kesler, S. R., Adams, H. F., Blasey, C. M., & Bigler, E. D. (2003). Premorbid intellectual functioning, education, and brain size in traumatic brain injury: an investigation of the cognitive reserve hypothesis. Applied Neuropsychology, 10(3), 153–162.CrossRefPubMedGoogle Scholar
  43. Kesler, S. R., Reiss, A. L., Vohr, B., Watson, C., Schneider, K. C., Katz, K. H., et al. (2008). Brain volume reductions within multiple cognitive systems in male preterm children at age twelve. Jornal de Pediatria, 152(4), 513–520. 520 e511.Google Scholar
  44. Kraemer, H. C., & Blasey, C. M. (2004). Centring in regression analyses: a strategy to prevent errors in statistical inference. International Journal of Methods in Psychiatric Research, 13(3), 141–151.CrossRefPubMedGoogle Scholar
  45. Lee, J. H. (2003). Genetic evidence for cognitive reserve: variations in memory and related cognitive functions. Journal of Clinical and Experimental Neuropsychology, 25(5), 594–613.CrossRefPubMedGoogle Scholar
  46. Leh, S. E., Petrides, M., & Strafella, A. P. (2009). The Neural Circuitry of Executive Functions in Healthy Subjects and Parkinson’s Disease. Neuropsychopharmacology.Google Scholar
  47. Lofstad, G. E., Reinfjell, T., Hestad, K., & Diseth, T. H. (2009). Cognitive outcome in children and adolescents treated for acute lymphoblastic leukaemia with chemotherapy only. Acta Paediatrica, 98(1), 180–186.CrossRefPubMedGoogle Scholar
  48. Magnuson, K. (2007). Maternal education and children’s academic achievement during middle childhood. Developmental Psychology, 43(6), 1497–1512.CrossRefPubMedGoogle Scholar
  49. Majnemer, A., Limperopoulos, C., Shevell, M., Rosenblatt, B., Rohlicek, C., & Tchervenkov, C. (2006). Long-term neuromotor outcome at school entry of infants with congenital heart defects requiring open-heart surgery. Jornal de Pediatria, 148(1), 72–77.Google Scholar
  50. Mantadakis, E., Cole, P. D., & Kamen, B. A. (2005). High-dose methotrexate in acute lymphoblastic leukemia: where is the evidence for its continued use? Pharmacotherapy, 25(5), 748–755.CrossRefPubMedGoogle Scholar
  51. Moleski, M. (2000). Neuropsychological, neuroanatomical, and neurophysiological consequences of CNS chemotherapy for acute lymphoblastic leukemia. Archives of Clinical Neuropsychology, 15(7), 603–630.PubMedGoogle Scholar
  52. Montour-Proulx, I., Kuehn, S. M., Keene, D. L., Barrowman, N. J., Hsu, E., Matzinger, M. A., et al. (2005). Cognitive changes in children treated for acute lymphoblastic leukemia with chemotherapy only according to the Pediatric Oncology Group 9605 protocol. Journal of Child Neurology, 20(2), 129–133.CrossRefPubMedGoogle Scholar
  53. Nathan, P. C., Wasilewski-Masker, K., & Janzen, L. A. (2009). Long-term outcomes in survivors of childhood acute lymphoblastic leukemia. Hematology/Oncology Clinics of North America, 23(5), 1065–1082. vi–vii.CrossRefPubMedGoogle Scholar
  54. Nithianantharajah, J., & Hannan, A. J. (2009). The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Progress in Neurobiology, 89(4), 369–382.CrossRefPubMedGoogle Scholar
  55. Paakko, E., Harila-Saari, A., Vanionpaa, L., Himanen, S., Pyhtinen, J., & Lanning, M. (2000). White matter changes on MRI during treatment in children with acute lymphoblastic leukemia: correlation with neuropsychological findings. Medical and Pediatric Oncology, 35(5), 456–461.CrossRefPubMedGoogle Scholar
  56. Paakko, E., Lehtinen, S., Harila-Saari, A., Ahonen, A., Jauhiainen, J., Torniainen, P., et al. (2003). Perfusion MRI and SPECT of brain after treatment for childhood acute lymphoblastic leukemia. Medical and Pediatric Oncology, 40(2), 88–92.CrossRefPubMedGoogle Scholar
  57. Perneczky, R., Diehl-Schmid, J., Drzezga, A., & Kurz, A. (2007). Brain reserve capacity in frontotemporal dementia: a voxel-based 18F-FDG PET study. European Journal of Nuclear Medicine and Molecular Imaging, 34(7), 1082–1087.CrossRefPubMedGoogle Scholar
  58. Peterson, C. C., Johnson, C. E., Ramirez, L. Y., Huestis, S., Pai, A. L., Demaree, H. A., et al. (2008). A meta-analysis of the neuropsychological sequelae of chemotherapy-only treatment for pediatric acute lymphoblastic leukemia. Pediatric Blood & Cancer, 51(1), 99–104.CrossRefGoogle Scholar
  59. Petrosini, L., De Bartolo, P., Foti, F., Gelfo, F., Cutuli, D., Leggio, M. G., et al. (2009). On whether the environmental enrichment may provide cognitive and brain reserves. Brain Research Reviews, 61(2), 221–239.CrossRefPubMedGoogle Scholar
  60. Porto, L., Preibisch, C., Hattingen, E., Bartels, M., Lehrnbecher, T., Dewitz, R., et al. (2008). Voxel-based morphometry and diffusion-tensor MR imaging of the brain in long-term survivors of childhood leukemia. European Radiology, 18(11), 2691–2700.CrossRefPubMedGoogle Scholar
  61. Precourt, S., Robaey, P., Lamothe, I., Lassonde, M., Sauerwein, H. C., & Moghrabi, A. (2002). Verbal cognitive functioning and learning in girls treated for acute lymphoblastic leukemia by chemotherapy with or without cranial irradiation. Developmental Neuropsychology, 21(2), 173–195.CrossRefPubMedGoogle Scholar
  62. Raymont, V., & Grafman, J. (2006). Cognitive neural plasticity during learning and recovery from brain damage. Progress in Brain Research, 157, 199–206.CrossRefPubMedGoogle Scholar
  63. Reddick, W. E., Shan, Z. Y., Glass, J. O., Helton, S., Xiong, X., Wu, S., et al. (2006). Smaller white-matter volumes are associated with larger deficits in attention and learning among long-term survivors of acute lymphoblastic leukemia. Cancer, 106(4), 941–949.CrossRefPubMedGoogle Scholar
  64. Reddick, W. E., Glass, J. O., Johnson, D. P., Laningham, F. H., & Pui, C. H. (2009). Voxel-based analysis of T2 hyperintensities in white matter during treatment of childhood leukemia. AJNR. American Journal of Neuroradiology, 30(10), 1947–1954.CrossRefPubMedGoogle Scholar
  65. Sachdev, P. S., & Valenzuela, M. (2009). Brain and cognitive reserve. The American Journal of Geriatric Psychiatry, 17(3), 175–178.CrossRefPubMedGoogle Scholar
  66. Scarmeas, N., & Stern, Y. (2003). Cognitive reserve and lifestyle. Journal of Clinical and Experimental Neuropsychology, 25(5), 625–633.CrossRefPubMedGoogle Scholar
  67. Scarmeas, N., Zarahn, E., Anderson, K. E., Hilton, J., Flynn, J., Van Heertum, R. L., et al. (2003). Cognitive reserve modulates functional brain responses during memory tasks: a PET study in healthy young and elderly subjects. Neuroimage, 19(3), 1215–1227.CrossRefPubMedGoogle Scholar
  68. Sheslow, D., & Adams, W. (2005). Wide range assessment of memory and learning, Second edition (WRAML2). Lutz: Psychological Assessment Resources.Google Scholar
  69. Sole-Padulles, C., Bartres-Faz, D., Junque, C., Vendrell, P., Rami, L., Clemente, I. C., et al. (2009). Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 30(7), 1114–1124.CrossRefPubMedGoogle Scholar
  70. Spiegler, B. J., Kennedy, K., Maze, R., Greenberg, M. L., Weitzman, S., Hitzler, J. K., et al. (2006). Comparison of long-term neurocognitive outcomes in young children with acute lymphoblastic leukemia treated with cranial radiation or high-dose or very high-dose intravenous methotrexate. Journal of Clinical Oncology, 24(24), 3858–3864.CrossRefPubMedGoogle Scholar
  71. Spreen, E., Sherman, E. M., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentary. New York: Oxford University Press.Google Scholar
  72. Stern, Y. (2006). Cognitive reserve and Alzheimer disease. Alzheimer Disease and Associated Disorders, 20(3 Suppl 2), S69–74.PubMedGoogle Scholar
  73. Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015–2028.CrossRefPubMedGoogle Scholar
  74. Stern, Y., Habeck, C., Moeller, J., Scarmeas, N., Anderson, K. E., Hilton, H. J., et al. (2005). Brain networks associated with cognitive reserve in healthy young and old adults. Cerebral Cortex, 15(4), 394–402.CrossRefPubMedGoogle Scholar
  75. Strangman, G., O’Neil-Pirozzi, T. M., Burke, D., Cristina, D., Goldstein, R., Rauch, S. L., et al. (2005). Functional neuroimaging and cognitive rehabilitation for people with traumatic brain injury. American Journal of Physical Medicine & Rehabilitation, 84(1), 62–75.CrossRefGoogle Scholar
  76. Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14(6), 623–628.CrossRefPubMedGoogle Scholar
  77. Valenzuela, M. J. (2008). Brain reserve and the prevention of dementia. Current Opinion in Psychiatry, 21(3), 296–302.CrossRefPubMedGoogle Scholar
  78. van Hooren, S. A., Valentijn, A. M., Bosma, H., Ponds, R. W., van Boxtel, M. P., & Jolles, J. (2007). Cognitive functioning in healthy older adults aged 64–81: a cohort study into the effects of age, sex, and education. Neuropsychology, Development, and Cognition. Section B: Aging, Neuropsychology and Cognition, 14(1), 40–54.Google Scholar
  79. Vernon-Feagans, L., Pancsofar, N., Willoughby, M., Odom, E., Quade, A., & Cox, M. (2008). Predictors of maternal language to infants during a picture book task in the home: family SES, child characteristics and the parenting environment. Journal of Applied Developmental Psychology, 29(3), 213–226.CrossRefPubMedGoogle Scholar
  80. Wechsler, D. (2002). Wechsler preschool and primary scale of intelligence (3rd ed.). San Antonio: The Psychological Corporation.Google Scholar
  81. Wechsler, D. (2003). Wechsler intelligence scale for children (4th ed.). San Antonio: The Psychological Corporation.Google Scholar
  82. Wetherington, C. E., Hooper, S. R., Keenan, H. T., Nocera, M., & Runyan, D. (2009). Parent Ratings of Behavioral Functioning After Traumatic Brain Injury in Very Young Children. Journal of Pediatric Psychology Google Scholar
  83. Wilke, M., Holland, S. K., Altaye, M., & Gaser, C. (2008). Template-O-Matic: a toolbox for creating customized pediatric templates. Neuroimage, 41(3), 903–913.CrossRefPubMedGoogle Scholar
  84. Woodcock, R., McGrew, K., & Mather, N. (2001). Woodcock-Johnson tests of cognitive abilities. Rolling Meadows: Riverside.Google Scholar
  85. Xiong, G. L., & Doraiswamy, P. M. (2009). Does meditation enhance cognition and brain plasticity? Annals of the New York Academy of Sciences, 1172, 63–69.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Shelli R. Kesler
    • 1
    • 2
  • Hiroko Tanaka
    • 1
  • Della Koovakkattu
    • 1
  1. 1.Department of Psychiatry and Behavioral Sciences, Neuropsychology and Neurorehabilitation LaboratoryStanford University School of MedicinePalo AltoUSA
  2. 2.Stanford Cancer CenterPalo AltoUSA

Personalised recommendations