Brain Imaging and Behavior

, Volume 4, Issue 3–4, pp 220–231 | Cite as

Age-related changes in the corpus callosum in early-onset bipolar disorder assessed using volumetric and cross-sectional measurements

  • Melissa Lopez-Larson
  • Janis L. Breeze
  • David N. Kennedy
  • Steven M. Hodge
  • Lena Tang
  • Constance Moore
  • Anthony J. Giuliano
  • Nikos Makris
  • Verne S. Caviness
  • Jean A. Frazier
Original Research

Abstract

Corpus callosum (CC) area abnormalities have been reported in magnetic resonance imaging (MRI) studies of adults and youths with bipolar disorder (BPD), suggesting interhemispheric communication may be abnormal in BPD and may be present early in the course of illness and affect normal neuromaturation of this structure throughout the lifecycle. Neuroimaging scans from 44 youths with DSM-IV BPD and 22 healthy controls (HC) were analyzed using cross-sectional area measurements and a novel method of volumetric parcellation. Univariate analyses of variance were conducted on CC subregions using both volume and traditional area measurements. Youths with BPD had smaller middle and posterior callosal regions, and reduced typical age-related increases in CC size. The cross-sectional area and novel volumetric methodologies resulted in similar findings. Future longitudinal assessments of CC development would track the evolution of callosal abnormalities in youths with BPD and allow exploration of the functional significance of these findings.

Keywords

Bipolar disorder Corpus callosum Neuroimaging Youths MRI 

Notes

Acknowledgements

This work was supported by several research grants from NIH: K08 MH01573 to JAF, U24 RR021382 to DNK, and K01 MH01798 to CM

References

  1. Adler, C. M., Delbello, M. P., Mills, N. P., Schmithorst, V., Holland, S., & Strakowski, S. M. (2005). Comorbid ADHD is associated with altered patterns of neuronal activation in adolescents with bipolar disorder performing a simple attention task. Bipolar Disorders, 7(6), 577–588.CrossRefPubMedGoogle Scholar
  2. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington: American Psychiatric Association.Google Scholar
  3. Atmaca, M., Ozdemir, H., Cetinkaya, S., Parmaksiz, S., Belli, H., Poyraz, A. K., et al. (2007a). Cingulate gyrus volumetry in drug free bipolar patients and patients treated with valproate or valproate and quetiapine. Journal of Psychiatric Research, 41(10), 821–827.CrossRefGoogle Scholar
  4. Atmaca, M., Ozdemir, H., & Yildirim, H. (2007b). Corpus callosum areas in first-episode patients with bipolar disorder. Psychological Medicine, 37(5), 699–704.CrossRefGoogle Scholar
  5. Barkovich, A. J. (1990). Normal development of the neonatal and infant brain. In A. J. Barkovich (Ed.), Pediatric neuroimaging (pp. 5–34). New York: Raven Press.Google Scholar
  6. Barnea-Goraly, N., Chang, K. D., Karchemskiy, A., Howe, M. E., & Reiss, A. L. (2009). Limbic and corpus callosum aberrations in adolescents with bipolar disorder: a tract-based spatial statistics analysis. Biological Psychiatry, 66(3), 238–244.CrossRefPubMedGoogle Scholar
  7. Bastin, M. E., Piatkowski, J. P., Storkey, A. J., Brown, L. J., Maclullich, A. M., & Clayden, J. D. (2008). Tract shape modelling provides evidence of topological change in corpus callosum genu during normal ageing. Neuroimage, 43(1), 20–28.CrossRefPubMedGoogle Scholar
  8. Bielecka, A. M., & Obuchowicz, E. (2008). Antiapoptotic action of lithium and valproate. Pharmacological Reports, 60(6), 771–782.PubMedGoogle Scholar
  9. Brambilla, P., Nicoletti, M. A., Sassi, R. B., Mallinger, A. G., Frank, E., Kupfer, D. J., et al. (2003). Magnetic resonance imaging study of corpus callosum abnormalities in patients with bipolar disorder. Biological Psychiatry, 54(11), 1294–1297.CrossRefPubMedGoogle Scholar
  10. Brambilla, P., Nicoletti, M., Sassi, R. B., Mallinger, A. G., Frank, E., Keshavan, M. S., et al. (2004). Corpus callosum signal intensity in patients with bipolar and unipolar disorder. Journal of Neurology, Neurosurgery and Psychiatry, 75(2), 221–225.Google Scholar
  11. Burke, H. L., & Yeo, R. A. (1994). Systematic variations in callosal morphology: the effects of age, gender, hand preference, and anatomic asymmetry. Neuropsychology, 8(4), 563–571.CrossRefGoogle Scholar
  12. Caetano, S. C., Silveira, C. M., Kaur, S., Nicoletti, M., Hatch, J. P., Brambilla, P., et al. (2008). Abnormal corpus callosum myelination in pediatric bipolar patients. Journal of Affective Disorders, 108(3), 297–301.CrossRefPubMedGoogle Scholar
  13. Cahill, C. M., Green, M. J., Jairam, R., & Malhi, G. S. (2007). Do cognitive deficits in juvenile bipolar disorder persist into adulthood? The Journal of Nervous and Mental Disease, 195(11), 891–896.CrossRefPubMedGoogle Scholar
  14. Caviness, V. S., Makris, N., Meyer, D. A., & Kennedy, D. N. (1996). MRI-based topographic parcellation of human neocortex: an anatomically specified method with estimate of reliability. Journal of Cognitive Neuroscience, 8(6), 566–588.CrossRefGoogle Scholar
  15. Chaddock, C. A., Barker, G. J., Marshall, N., Schulze, K., Hall, M. H., Fern, A., et al. (2009). White matter microstructural impairments and genetic liability to familial bipolar I disorder. The British Journal of Psychiatry, 194(6), 527–534.CrossRefPubMedGoogle Scholar
  16. Chang, K., Adleman, N. E., Dienes, K., Simeonova, D. I., Menon, V., & Reiss, A. (2004). Anomalous prefrontal-subcortical activation in familial pediatric bipolar disorder. Archives of General Psychiatry, 61, 781–792.CrossRefPubMedGoogle Scholar
  17. Coffman, J. A., Bornstein, R. A., Olson, S. C., Schwarzkopf, S. B., & Nasrallah, H. A. (1990). Cognitive impairment and cerebral structure by MRI in bipolar disorder. Biological Psychiatry, 27, 1188–1196.CrossRefPubMedGoogle Scholar
  18. de Lacoste, M. C., Kirkpatrick, J. B., & Ross, E. D. (1985). Topography of the human corpus callosum. Journal of Neuropathology and Experimental Neurology, 44(6), 578–591.CrossRefPubMedGoogle Scholar
  19. Dickstein, D. P., Rich, B. A., Roberson-Nay, R., Berghorst, L., Vinton, D., Pine, D. S., et al. (2007). Neural activation during encoding of emotional faces in pediatric bipolar disorder. Bipolar Disorders, 9(7), 679–692.CrossRefPubMedGoogle Scholar
  20. Farrow, T. F., Whitford, T. J., Williams, L. M., Gomes, L., & Harris, A. W. (2005). Diagnosis-related regional gray matter loss over two years in first episode schizophrenia and bipolar disorder. Biological Psychiatry, 58(9), 713–723.CrossRefPubMedGoogle Scholar
  21. Filipek, P. A., Kennedy, D. N., Caviness, V. S., Jr., Rossnick, S. L., Spraggins, T. A., & Starewicz, P. M. (1989). Magnetic resonance imaging-based morphometry: development and applications to normal controls. Annals of Neurology, 25(1), 61–67.CrossRefPubMedGoogle Scholar
  22. Frazier, J. A., Breeze, J. L., Makris, N., Giuliano, A. J., Herbert, M. R., Seidman, L. J., et al. (2005a). Cortical gray matter differences identified by structural magnetic resonance imaging in pediatric bipolar disorder. Bipolar Disorders, 7, 555–569.CrossRefGoogle Scholar
  23. Frazier, J. A., Chiu, S., Breeze, J. L., Makris, N., Lange, N., Kennedy, D. N., et al. (2005b). Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. The American Journal of Psychiatry, 162(7), 1256–1265.CrossRefGoogle Scholar
  24. Frazier, J. A., Breeze, J. L., Papadimitriou, G., Kennedy, D. N., Hodge, S. M., Moore, C. M., et al. (2007). White matter abnormalities in children with and at risk for bipolar disorder. Bipolar Disorders, 9(8), 799–809.CrossRefPubMedGoogle Scholar
  25. Frazier, J. A., Hodge, S. M., Breeze, J. L., Giuliano, A. J., Terry, J. E., Moore, C. M., et al. (2008). Diagnostic and sex effects on limbic volumes in early-onset bipolar disorder and schizophrenia. Schizophrenia Bulletin, 34(1), 37–46.CrossRefPubMedGoogle Scholar
  26. Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain, 123(Pt 7), 1293–1326.CrossRefPubMedGoogle Scholar
  27. Giedd, J. N., Rumsey, J. M., Castellanos, F. X., Rajapakse, J. C., Kaysen, D., Vaituzis, A. C., et al. (1996). A quantitative MRI study of the corpus callosum in children and adolescents. Brain Research. Developmental Brain Research, 91(2), 274–280.CrossRefPubMedGoogle Scholar
  28. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Rajapakse, J. C., Vaituzis, A. C., Liu, H., et al. (1999). Development of the human corpus callosum during childhood and adolescence: a longitudinal MRI study. Progress in Neuropsychopharmacology & Biological Psychiatry, 23(4), 571–588.CrossRefGoogle Scholar
  29. Hauser, P., Dauphinais, I. D., Berrettini, W., DeLisi, L. E., Gelernter, J., & Post, R. M. (1989). Corpus callosum dimensions measured by magnetic resonance imaging in bipolar affective disorder and schizophrenia. Biological Psychiatry, 26(7), 659–668.CrossRefPubMedGoogle Scholar
  30. Hutchinson, A. D., Mathias, J. L., & Banich, M. T. (2008). Corpus callosum morphology in children and adolescents with attention deficit hyperactivity disorder: a meta-analytic review. Neuropsychology, 22(3), 341–349.CrossRefPubMedGoogle Scholar
  31. Jacobsen, L. K., Giedd, J. N., Rajapakse, J. C., Hamburger, S. D., Vaituzis, A. C., Frazier, J. A., et al. (1997). Quantitative magnetic resonance imaging of the corpus callosum in childhood onset schizophrenia. Psychiatry Research, 68(2–3), 77–86.CrossRefPubMedGoogle Scholar
  32. Joseph, M. F., Frazier, T. W., Youngstrom, E. A., & Soares, J. C. (2008). A quantitative and qualitative review of neurocognitive performance in pediatric bipolar disorder. Journal of Child and Adolescent Psychopharmacology, 18(6), 595–605.CrossRefPubMedGoogle Scholar
  33. Keshavan, M. S., Diwadkar, V. A., DeBellis, M., Dick, E., Kotwal, R., Rosenberg, D. R., et al. (2002). Development of the corpus callosum in childhood, adolescence and early adulthood. Life Sciences, 70(16), 1909–1922.CrossRefPubMedGoogle Scholar
  34. Lopez-Larson, M. P., Michael, E. S., Terry, J. E., Breeze, J. L., Hodge, S. M., Tang, L., et al. (2009). Subcortical differences among youths with ADHD compared to those with bipolar disorder with and without ADHD. Journal of Child and Adolescent Psychopharmacology, 19(1).Google Scholar
  35. Makris, N., Meyer, J. W., Bates, J. F., Yeterian, E. H., Kennedy, D. N., & Caviness, V. S. (1999). MRI-based topographic parcellation of human cerebral white matter and nuclei II. Rationale and applications with systematics of cerebral connectivity. Neuroimage, 9(1), 18–45.CrossRefPubMedGoogle Scholar
  36. Meyer, J. W., Makris, N., Bates, J. F., Caviness, V. S., & Kennedy, D. N. (1999). MRI-based topographic parcellation of human cerebral white matter. Neuroimage, 9(1), 1–17.CrossRefPubMedGoogle Scholar
  37. Nelson, E. E., Vinton, D. T., Berghorst, L., Towbin, K. E., Hommer, R. E., Dickstein, D. P., et al. (2007). Brain systems underlying response flexibility in healthy and bipolar adolescents: an event-related fMRI study. Bipolar Disorders, 9(8), 810–819.CrossRefPubMedGoogle Scholar
  38. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia, 9, 97–113.CrossRefPubMedGoogle Scholar
  39. Orvaschel, H., & Puig-Antich, J. (1987). Schedule for affective disorders and schizophrenia for school-age children: Epidemiologic 4th Version. Ft. Lauderdale: Nova University, Center for Psychological Study.Google Scholar
  40. Pagani, E., Agosta, F., Rocca, M. A., Caputo, D., & Filippi, M. (2008). Voxel-based analysis derived from fractional anisotropy images of white matter volume changes with aging. Neuroimage, 41(3), 657–667.CrossRefPubMedGoogle Scholar
  41. Pandya, D. N., & Seltzer, B. (1986). The topography of commissural fibers. In F. Lepore, M. Ptito, & H. H. Jasper (Eds.), Two hemispheres, one brain: Functions of the corpus callosum (pp. 47–73). New York: Wiley.Google Scholar
  42. Paus, T., Collins, D. L., Evans, A. C., Leonard, G., Pike, B., & Zijdenbos, A. (2001). Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Research Bulletin, 54(3), 255–266.CrossRefPubMedGoogle Scholar
  43. Pavuluri, M. N., O’Connor, M. M., Harral, E., & Sweeney, J. A. (2007). Affective neural circuitry during facial emotion processing in pediatric bipolar disorder. Biological Psychiatry, 62(2), 158–167.CrossRefPubMedGoogle Scholar
  44. Pujol, J., Vendrell, P., Junque, C., Marti-Vilalta, J. L., & Capdevila, A. (1993). When does human brain development end? Evidence of corpus callosum growth up to adulthood. Annals of Neurology, 34(1), 71–75.CrossRefPubMedGoogle Scholar
  45. Rich, B. A., Vinton, D. T., Roberson-Nay, R., Hommer, R. E., Berghorst, L. H., McClure, E. B., et al. (2006). Limbic hyperactivation during processing of neutral facial expressions in children with bipolar disorder. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8900–8905.CrossRefPubMedGoogle Scholar
  46. Rich, B. A., Fromm, S. J., Berghorst, L. H., Dickstein, D. P., Brotman, M. A., Pine, D. S., et al. (2008). Neural connectivity in children with bipolar disorder: impairment in the face emotion processing circuit. Journal of Child Psychology and Psychiatry, 49(1), 88–96.CrossRefPubMedGoogle Scholar
  47. Seidman, L. J., Faraone, S. V., Goldstein, J. M., Goodman, J. M., Kremen, W. S., Matsuda, G., et al. (1997). Reduced subcortical brain volumes in nonpsychotic siblings of schizophrenic patients: a pilot magnetic resonance imaging study. American Journal of Medical Genetics, 74(5), 507–514.CrossRefPubMedGoogle Scholar
  48. Soares, J. C., & Mann, J. J. (1997). The anatomy of mood disorders: review of structural neuroimaging studies. Biological Psychiatry, 41(1), 86–106.CrossRefPubMedGoogle Scholar
  49. Tomasch, J. (1954). Size, distribution, and number of fibres in the human corpus callosum. The Anatomical Record, 119(1), 119–135.CrossRefPubMedGoogle Scholar
  50. Valera, E. M., Faraone, S. V., Murray, K. E., & Seidman, L. J. (2007). Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biological Psychiatry, 61(12), 1361–1369.CrossRefPubMedGoogle Scholar
  51. Walterfang, M., Malhi, G. S., Wood, A. G., Reutens, D. C., Chen, J., Barton, S., et al. (2009). Corpus callosum size and shape in established bipolar affective disorder. Australian and New Zealand Journal of Psychiatry, 43(9), 838–845.CrossRefPubMedGoogle Scholar
  52. Wang, F., Kalmar, J. H., Edmiston, E., Chepenik, L. G., Bhagwagar, Z., Spencer, L., et al. (2008). Abnormal corpus callosum integrity in bipolar disorder: a diffusion tensor imaging study. Biological Psychiatry, 64(8), 730–733.CrossRefPubMedGoogle Scholar
  53. Wilder-Willis, K. E., Sax, K. W., Rosenberg, H. L., Fleck, D. E., Shear, P. K., & Strakowski, S. M. (2001). Persistent attentional dysfunction in remitted bipolar disorder. Bipolar Disorders, 3(2), 58–62.CrossRefPubMedGoogle Scholar
  54. Witelson, S. F. (1989). Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain, 112(Pt 3), 799–835.CrossRefPubMedGoogle Scholar
  55. Woodruff, P. W., Phillips, M. L., Rushe, T., Wright, I. C., Murray, R. M., & David, A. S. (1997). Corpus callosum size and inter-hemispheric function in schizophrenia. Schizophrenia Research, 23(3), 189–196.CrossRefPubMedGoogle Scholar
  56. Yasar, A. S., Monkul, E. S., Sassi, R. B., Axelson, D., Brambilla, P., Nicoletti, M. A., et al. (2006). MRI study of corpus callosum in children and adolescents with bipolar disorder. Psychiatry Research, 146(1), 83–85.CrossRefPubMedGoogle Scholar
  57. Young, R. C., Biggs, J. T., Ziegler, V. E., & Meyer, D. A. (1978). A rating scale for mania: reliability, validity and sensitivity. The British Journal of Psychiatry, 133, 429–435.CrossRefPubMedGoogle Scholar
  58. Yurgelun-Todd, D. A., Silveri, M. M., Gruber, S. A., Rohan, M. L., & Pimentel, P. J. (2007). White matter abnormalities observed in bipolar disorder: a diffusion tensor imaging study. Bipolar Disorders, 9(5), 504–512.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Melissa Lopez-Larson
    • 1
    • 2
  • Janis L. Breeze
    • 3
    • 4
  • David N. Kennedy
    • 3
    • 5
    • 6
    • 8
    • 9
  • Steven M. Hodge
    • 6
    • 8
    • 9
  • Lena Tang
    • 6
  • Constance Moore
    • 3
    • 7
  • Anthony J. Giuliano
    • 3
  • Nikos Makris
    • 3
    • 5
    • 6
  • Verne S. Caviness
    • 3
    • 5
    • 6
  • Jean A. Frazier
    • 8
    • 9
  1. 1.The Brain InstituteUniversity of UtahSalt Lake CityUSA
  2. 2.University of Utah Medical SchoolSalt Lake CityUSA
  3. 3.Harvard Medical SchoolBostonUSA
  4. 4.Child and Adolescent Neuropsychiatric Research ProgramCambridge Health AllianceCambridgeUSA
  5. 5.Department of NeurologyMassachusetts General Hospital (MGH)BostonUSA
  6. 6.Center for Morphometric AnalysisMGHCharlestownUSA
  7. 7.Brain Imaging CenterMcLean HospitalBelmontUSA
  8. 8.Child and Adolescent Neurodevelopment InitiativeUniversity of Massachusetts Medical SchoolWorcesterUSA
  9. 9.Psychiatry DepartmentUMASS Memorial Medical CenterWorcesterUSA

Personalised recommendations