Brain Imaging and Behavior

, Volume 4, Issue 3–4, pp 199–211 | Cite as

Sustained cortical and subcortical neuromodulation induced by electrical tongue stimulation

  • Joseph C. WildenbergEmail author
  • Mitchell E. Tyler
  • Yuri P. Danilov
  • Kurt A. Kaczmarek
  • Mary E. Meyerand
Original Research


This pilot study aimed to show that information-free stimulation of the tongue can improve behavioral measures and induce sustained neuromodulation of the balance-processing network in individuals with balance dysfunction. Twelve balance-impaired subjects received one week of cranial nerve non-invasive neuromodulation (CN-NINM). Before and after the week of stimulation, postural sway and fMRI activation were measured to monitor susceptibility to optic flow. Nine normal controls also underwent the postural sway and fMRI tests but did not receive CN-NINM. Results showed that before CN-NINM balance-impaired subjects swayed more than normal controls as expected (p ≤ 0.05), and that overall sway and susceptibility to optic flow decreased after CN-NINM (p ≤ 0.005 & p ≤ 0.05). fMRI showed upregulation of visual sensitivity to optic flow in balance-impaired subjects that decreased after CN-NINM. A region of interest analysis indicated that CN-NINM may induce neuromodulation by increasing activity within the dorsal pons (p ≤ 0.01).


fMRI Optic flow Neuromodulation Balance disorders Brainstem Plasticity 



The authors gratefully acknowledge Kelsey Hawkins for clinical coordination and Dana Tudorascu for statistical consultation. Also thank you to Sterling Johnson for use of the goggle display system. This study was supported by grant number T90DK070079 and R90DK071515 from the National Institute of Diabetes and Digestive and Kidney Diseases, 1UL1RR025011 from the Clinical and Translational Science Award (CTSA) program of the National Center for Research Resources, National Institutes of Health, and UW-I&EDR funding. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Diabetes and Digestive and Kidney Diseases or the National Institutes of Health.


Joseph Wildenberg was supported by grant numbers T90DK070079 and R90DK071515 from the National Institute of Diabetes and Digestive and Kidney Diseases. Authors Danilov, Kaczmarek, and Tyler have an ownership interest in Advanced Neurorehabilitation, LLC, which has intellectual property rights in the field of research reported in this publication. Mary Meyerand reported no financial or potential conflicts of interest.


  1. Anker, A. R., Ali, A., Arendt, H. E., Cass, S. P., Cotter, L. A., Jian, B. J., et al. (2003). Use of electrical vestibular stimulation to alter genioglossal muscle activity in awake cats. Journal of Vestibular Research, 13, 1–8.Google Scholar
  2. Bach-y-Rita, P., Collins, C. C., Saunders, F. A., White, B., & Scadden, L. (1969). Vision substitution by tactile image projection. Nature, 221, 963–964.CrossRefPubMedGoogle Scholar
  3. Bach-y-Rita, P., Kaczmarek, K. A., Tyler, M. E., & Garcia-Lara, J. (1998). Form perception with a 49-point electrotactile stimulus array on the tongue: a technical note. Journal of Rehabilitation Research and Development, 35, 427–430.PubMedGoogle Scholar
  4. Bach-y-Rita, P., & Kercel, S. W. (2003). Sensory substitution and the human–machine interface. Trends in Cognitive Sciences, 7, 541–546.CrossRefPubMedGoogle Scholar
  5. Bense, S., Janusch, B., Vucurevic, G., Bauermann, T., Schlindwein, P., Brandt, T., et al. (2006). Brainstem and cerebellar fMRI-activation during horizontal and vertical optokinetic stimulation. Experimental Brain Research, 174, 312–323.CrossRefGoogle Scholar
  6. Boggio, P. S., Nunes, A., Rigonatti, S. P., Nitsche, M. A., Pascual-Leone, A., & Fregni, F. (2007). Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restorative Neurology and Neuroscience, 25, 123–129.PubMedGoogle Scholar
  7. Bolognini, N., Pascual-Leone, A., & Fregni, F. (2009). Using non-invasive brain stimulation to augment motor training-induced plasticity. Journal of Neuroengineering and Rehabilitation, 6, 6–8.CrossRefGoogle Scholar
  8. Borel, L., Lopez, C., Péruch, P., & Lacour, M. (2008). Vestibular syndrome: a change in internal spatial representation. Neurophysiologie Clinique/Clinical Neurophysiology, 38, 375–389.CrossRefGoogle Scholar
  9. Buisseret-Delmas, C., Compoint, C., Delfini, C., & Buisseret, P. (1999). Organisation of reciprocal connections between trigeminal and vestibular nuclei in the rat. Journal of Comparative Neurology, 409, 153–168.Google Scholar
  10. Canals, S., Beyerlein, M., Merkle, H., & Logothetis, N. K. (2009). Functional MRI evidence for LTP-induced neural network reorganization. Current Biology, 19, 398–403.CrossRefPubMedGoogle Scholar
  11. Cardin, V., & Smith, A. T. (2010). Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cerebral Cortex, doi: 10.1093/cercor/bhp268.
  12. Celnik, P., Hummel, F., Harris-Love, M., Wolk, R., & Cohen, L. G. (2007). Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke. Archives of Physical Medicine and Rehabilitation, 88, 1369–1376.CrossRefPubMedGoogle Scholar
  13. Cesarani, A., Alpini, D., Monti, B., & Raponi, G. (2004). The treatment of acute vertigo. Neurological Sciences, 25, 26–30.CrossRefGoogle Scholar
  14. Charrier, C., Coronas, V., Fombonne, J., Roger, M., Jean, A., Krantic, S., et al. (2006). Characterization of neural stem cells in the dorsal vagal complex of adult rat by in vivo proliferation labeling and in vitro neurosphere assay. Neuroscience, 138, 5–16.CrossRefPubMedGoogle Scholar
  15. Chebat, D. R., Rainville, C., Kupers, R., & Ptito, M. (2007). Tactile-'visual'acuity of the tongue in early blind individuals. Neuroreport, 18, 1901–1904.CrossRefPubMedGoogle Scholar
  16. Collignon, O., Voss, P., Lassonde, M., & Lepore, F. (2009). Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Experimental Brain Research, 192, 343–358.CrossRefGoogle Scholar
  17. Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.CrossRefPubMedGoogle Scholar
  18. Danilov, Y. P., Tyler, M. E., Skinner, K. L., & Bach-y-Rita, P. (2006). Efficacy of electrotactile vestibular substitution in patients with bilateral vestibular and central balance loss. Conference Proceedings—IEEE Engineering in Medicine and Biology Society, Suppl, 6605–6609.Google Scholar
  19. Danilov, Y., Tyler, M., Skinner, K., Hogle, R., & Bach-y-Rita, P. (2007). Efficacy of electrotactile vestibular substitution in patients with peripheral and central vestibular loss. Journal of Vestibular Research, 17, 119–130.PubMedGoogle Scholar
  20. Deutschlander, A., Bense, S., Stephan, T., Schwaiger, M., Dieterich, M., & Brandt, T. (2004). Rollvection versus linearvection: comparison of brain activations in PET. Human Brain Mapping, 21, 143–153.CrossRefPubMedGoogle Scholar
  21. Diedrichsen, J. (2006). A spatially unbiased atlas template of the human cerebellum. Neuroimage, 33, 127–138.CrossRefPubMedGoogle Scholar
  22. Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., & Ramnani, N. (2009). A probabilistic MR atlas of the human cerebellum. Neuroimage, 46, 39–46.CrossRefPubMedGoogle Scholar
  23. Dieterich, M. (2007). Central vestibular disorders. Journal of Neurology, 254, 559–568.CrossRefPubMedGoogle Scholar
  24. Dieterich, M., & Brandt, T. (2000). Brain activation studies on visual-vestibular and ocular motor interaction. Current Opinion in Neurology, 13, 13.CrossRefPubMedGoogle Scholar
  25. Dieterich, M., & Brandt, T. (2008). Functional brain imaging of peripheral and central vestibular disorders. Brain, 131, 2538–2552.CrossRefPubMedGoogle Scholar
  26. Dieterich, M., Bense, S., Stephan, T., Yousry, T. A., & Brandt, T. (2003). fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation. Experimental Brain Research, 148, 117–127.CrossRefGoogle Scholar
  27. Dieterich, M., Bauermann, T., Best, C., Stoeter, P., & Schlindwein, P. (2007). Evidence for cortical visual substitution of chronic bilateral vestibular failure (an fMRI study). Brain, 130, 2108–2116.CrossRefPubMedGoogle Scholar
  28. Duvernoy, H. M. (1995). The human brain stem and cerebellum (p. 430). New York: Springer-Verlag.Google Scholar
  29. Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magnetic Resonance in Medicine, 33, 636–647.CrossRefPubMedGoogle Scholar
  30. Fuentes, R., Petersson, P., Siesser, W. B., Caron, M. G., & Nicolelis, M. A. L. (2009). Spinal cord stimulation restores locomotion in animal models of Parkinson's disease. Science, 323, 1578.CrossRefPubMedGoogle Scholar
  31. Hammond, C., Ammari, R., Bioulac, B., & Garcia, L. (2008). Latest view on the mechanism of action of deep brain stimulation. Movement Disorders, 23, 2111–2121.CrossRefPubMedGoogle Scholar
  32. Herrick, J. L., & Keifer, J. (2000). Central Trigeminal and Posterior Eighth Nerve Projections in the Turtle Chrysemys picta Studied in vitro. Brain, Behavior and Evolution, 51, 183–201.Google Scholar
  33. Indovina, I., Maffei, V., Bosco, G., Zago, M., Macaluso, E., & Lacquaniti, F. (2005). Representation of visual gravitational motion in the human vestibular cortex. Science, 308, 416–419.CrossRefPubMedGoogle Scholar
  34. Johnstone, T., Ores Walsh, K. S., Greischar, L. L., Alexander, A. L., Fox, A. S., Davidson, R. J., et al. (2006). Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Human Brain Mapping, 27, 779–788.CrossRefPubMedGoogle Scholar
  35. Kaczmarek, K. A., & Bach-y-Rita, P. (1995). Tactile displays. In W. Barfield & T. A. Furness (Eds.), Virtual environments and advanced interface design (pp. 349–414). USA: Oxford University Press.Google Scholar
  36. Kelley, D. J., Oakes, T. R., Greischar, L. L., Chung, M. K., Ollinger, J. M., & Greene, E. (2008). Automatic physiological waveform processing for fMRI noise correction and analysis. PLoS ONE, 3, e1751.CrossRefPubMedGoogle Scholar
  37. Kikuchi, M., Naito, Y., Senda, M., Okada, T., Shinohara, S., Fujiwara, K., et al. (2009). Cortical activation during optokinetic stimulation—an fMRI study. Acta Oto-laryngologica, 129, 440–443.CrossRefPubMedGoogle Scholar
  38. Kleinschmidt, A., Thilo, K. V., Buchel, C., Gresty, M. A., Bronstein, A. M., & Frackowiak, R. S. J. (2002). Neural correlates of visual-motion perception as object-or self-motion. Neuroimage, 16, 873–882.CrossRefPubMedGoogle Scholar
  39. Kovacs, S., Peeters, R., Smits, M., De Ridder, D., Van Hecke, P., & Sunaert, S. (2006). Activation of cortical and subcortical auditory structures at 3T by means of a functional magnetic resonance imaging paradigm suitable for clinical use. Investigative Radiology, 41, 87–96.CrossRefPubMedGoogle Scholar
  40. Kovacs, G., Raabe, M., & Greenlee, M. W. (2008). Neural correlates of visually induced self-motion illusion in depth. Cerebral Cortex, 18, 1779–1787.CrossRefPubMedGoogle Scholar
  41. Kupers, R., Fumal, A., de Noordhout, A. M., Gjedde, A., Schoenen, J., & Ptito, M. (2006). Transcranial magnetic stimulation of the visual cortex induces somatotopically organized qualia in blind subjects. Proceedings of the National Academy of Sciences, 103, 13256–13260.CrossRefGoogle Scholar
  42. Langer, T., Fuchs, A. F., Scudder, C. A., & Chubb, M. C. (1985). Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. Journal of Comparative Neurology, 235, 1–25.CrossRefPubMedGoogle Scholar
  43. Lozano, C. A., Kaczmarek, K. A., & Santello, M. (2009). Electrotactile stimulation on the tongue: intensity perception, discrimination, and cross-modality estimation. Somatosensory & Motor Research, 26, 50–63.CrossRefGoogle Scholar
  44. Lund, T. E., Nørgaard, M. D., Rostrup, E., Rowe, J. B., & Paulson, O. B. (2005). Motion or activity: their role in intra-and inter-subject variation in fMRI. Neuroimage, 26, 960–964.CrossRefPubMedGoogle Scholar
  45. Marano, E., Marcelli, V., Stasio, E. D., Bonuso, S., Vacca, G., Manganelli, F., et al. (2005). Trigeminal stimulation elicits a peripheral vestibular imbalance in migraine patients. Headache: the Journal of Head and Face Pain, 45, 325–331.Google Scholar
  46. Mergner, T., Schweigart, G., Maurer, C., & Blümle, A. (2005). Human postural responses to motion of real and virtual visual environments under different support base conditions. Experimental Brain Research, 167, 535–556.CrossRefGoogle Scholar
  47. Miller, G. (2009). Neuropsychiatry. Rewiring faulty circuits in the brain. Science, 323, 1554–1556.CrossRefPubMedGoogle Scholar
  48. Montgomery, E. B., & Gale, J. T. (2008). Mechanisms of action of deep brain stimulation (DBS). Neuroscience and Biobehavioral Reviews, 32, 388–407.CrossRefPubMedGoogle Scholar
  49. Nichols, T., & Hayasaka, S. (2003). Controlling the familywise error rate in functional neuroimaging: a comparative review. Statistical Methods in Medical Research, 12, 419–446.CrossRefPubMedGoogle Scholar
  50. O’Connor, K. W., Loughlin, P. J., Redfern, M. S., & Sparto, P. J. (2008). Postural adaptations to repeated optic flow stimulation in older adults. Gait & Posture, 28, 385–391.CrossRefGoogle Scholar
  51. Ohlendorf, S., Sprenger, A., Speck, O., Haller, S., & Kimmig, H. (2008). Optic flow stimuli in and near the visual field centre: a group fMRI study of motion sensitive regions. PLoS ONE, 3, e4043.CrossRefPubMedGoogle Scholar
  52. Palmisano, S., Pinniger, G. J., Ash, A., & Steele, J. R. (2009). Effects of simulated viewpoint jitter on visually induced postural sway. Perception, 38, 442–453.CrossRefPubMedGoogle Scholar
  53. Petrie, A., & Sabin, C. (2005). Medical statistics at a glance. Malden: Wiley-Blackwell. 160 pp.Google Scholar
  54. Pietrini, P., Ptito, M., & Kupers, R. (2009). Blindness and consciousness: New light from the dark. In S. Laureys, & G. Tononi G (Eds.), The neurology of consciousness. New York: Academic Press, pp. 360–374.Google Scholar
  55. Poirier, C., De Volder, A. G., & Scheiber, C. (2007). What neuroimaging tells us about sensory substitution. Neuroscience and Biobehavioral Reviews, 31, 1064–1070.CrossRefPubMedGoogle Scholar
  56. Previc, F. H., Liotti, M., Blakemore, C., Beer, J., & Fox, P. (2000). Functional imaging of brain areas involved in the processing of coherent and incoherent wide field-of-view visual motion. Experimental Brain Research, 131, 393–405.CrossRefGoogle Scholar
  57. Ptito, M., Moesgaard, S. M., Gjedde, A., & Kupers, R. (2005). Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain, 128, 606.CrossRefPubMedGoogle Scholar
  58. Redfern, M. S., & Furman, J. M. (1994). Postural sway of patients with vestibular disorders during optic flow. Journal of Vestibular Research, 4, 221–230.PubMedGoogle Scholar
  59. Robinson, B. S., Cook, J. L., Richburg, C. M. C., & Price, S. E. (2009). Use of an electrotactile vestibular substitution system to facilitate balance and gait of an individual with gentamicin-induced bilateral vestibular hypofunction and bilateral transtibial amputation. Journal of Neurologic Physical Therapy, 33, 150–159.PubMedGoogle Scholar
  60. Sampaio, E., Maris, S., & Bach-y-Rita, P. (2001). Brain plasticity:‘visual’acuity of blind persons via the tongue. Brain Research, 908, 204–207.CrossRefPubMedGoogle Scholar
  61. Satoh, Y., Ishizuka, K. I., & Murakami, T. (2009). Modulation of the masseteric monosynaptic reflex by stimulation of the vestibular nuclear complex in rats. Neurosci Lett, 466, 16–20.Google Scholar
  62. Slobounov, S., Wu, T., Hallett, M., Shibasaki, H., Slobounov, E., & Newell, K. (2006). Neural underpinning of postural responses to visual field motion. Biological Psychology, 72, 188–197.CrossRefPubMedGoogle Scholar
  63. Sunaert, S., Van Hecke, P., Marchal, G., & Orban, G. A. (1999). Motion-responsive regions of the human brain. Experimental Brain Research, 127, 355–370.CrossRefGoogle Scholar
  64. Thurrell, A., & Bronstein, A. (2002). Vection increases the magnitude and accuracy of visually evoked postural responses. Experimental Brain Research, 147, 558–560.CrossRefGoogle Scholar
  65. Tyler, M., Danilov, Y., & Bach-Y-Rita, P. (2003). Closing an open-loop control system: vestibular substitution through the tongue. Journal of Integrative Neuroscience, 2, 159–164.CrossRefPubMedGoogle Scholar
  66. van Asten, W., Gielen, C., & Gon, J. J. D. (1988). Postural adjustments induced by simulated motion of differently structured environments. Experimental Brain Research, 73, 371–383.CrossRefGoogle Scholar
  67. Vuillerme, N., & Cuisinier, R. (2009). Sensory supplementation through tongue electrotactile stimulation to preserve head stabilization in space in the absence of vision. Investigative Ophthalmology & Visual Science, 50, 476–481.CrossRefGoogle Scholar
  68. Vuillerme, N., Pinsault, N., Fleury, A., Chenu, O., Demongeot, J., Payan, Y., et al. (2008). Effectiveness of an electro-tactile vestibular substitution system in improving upright postural control in unilateral vestibular-defective patients. Gait Posture, 28, 711–715.CrossRefPubMedGoogle Scholar
  69. Walker, S. C., Helm, P. A., & Lavery, L. A. (1997). Gait pattern alteration by functional sensory substitution in healthy subjects and in diabetic subjects with peripheral neuropathy. Archives of Physical Medicine and Rehabilitation, 78, 853–856.CrossRefPubMedGoogle Scholar
  70. Webster, B. R., Celnik, P. A., & Cohen, L. G. (2006). Noninvasive brain stimulation in stroke rehabilitation. NeuroRx, 3, 474–481.CrossRefPubMedGoogle Scholar
  71. Williams, J. A., Imamura, M., & Fregni, F. (2009). Updates on the use of non-invasive brain stimulation in physical and rehabilitation medicine. Journal of Rehabilitation Medicine, 41, 305–311.CrossRefPubMedGoogle Scholar
  72. Yamada, M., Tanemura, K., Okada, S., Iwanami, A., Nakamura, M., Mizuno, H., et al. (2007). Electrical stimulation modulates fate determination of differentiating embryonic stem cells. Stem Cells, 25, 562–570.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Joseph C. Wildenberg
    • 1
    • 2
    • 5
    Email author
  • Mitchell E. Tyler
    • 3
  • Yuri P. Danilov
    • 3
  • Kurt A. Kaczmarek
    • 3
  • Mary E. Meyerand
    • 1
    • 4
  1. 1.Neuroscience Training ProgramUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Medical Scientist Training ProgramUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Orthopedics and RehabilitationUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Department of Medical PhysicsUniversity of Wisconsin-MadisonMadisonUSA
  5. 5.1122o Wisconsin Institutes for Medical ResearchMadisonUSA

Personalised recommendations