Brain Imaging and Behavior

, Volume 4, Issue 2, pp 141–154 | Cite as

The Nature of Processing Speed Deficits in Traumatic Brain Injury: is Less Brain More?

  • Frank G. HillaryEmail author
  • Helen M. Genova
  • John D. Medaglia
  • Neal M. Fitzpatrick
  • Kathy S. Chiou
  • Britney M. Wardecker
  • Robert G. FranklinJr.
  • Jianli Wang
  • John DeLuca


The cognitive constructs working memory (WM) and processing speed are fundamental components to general intellectual functioning in humans and highly susceptible to disruption following neurological insult. Much of the work to date examining speeded working memory deficits in clinical samples using functional imaging has demonstrated recruitment of network areas including prefrontal cortex (PFC) and anterior cingulate cortex (ACC). What remains unclear is the nature of this neural recruitment. The goal of this study was to isolate the neural networks distinct from those evident in healthy adults and to determine if reaction time (RT) reliably predicts observable between-group differences. The current data indicate that much of the neural recruitment in TBI during a speeded visual scanning task is positively correlated with RT. These data indicate that recruitment in PFC during tasks of rapid information processing are at least partially attributable to normal recruitment of PFC support resources during slowed task processing.


TBI fMRI Reorganization Working memory Processing speed 

Supplementary material

11682_2010_9094_MOESM1_ESM.doc (96 kb)
Supplementary Tables S1, S2 Group data presenting “peak” activation for canonical HRF analysis illustrated in Fig. 1 a,b. Note: “Region” indicates peak activation for Brodmann’s areas. For Regions where more than one peak was present in any specific Brodmann’s area and gyrus, only the most significant peak is reported. (DOC 95 kb)


  1. Ashburner, J., Neelin, P., Collins, D. L., Evans, A., & Friston, K. (1997). Incorporating prior knowledge into image registration. Neuroimage, 6(4), 344–352.CrossRefPubMedGoogle Scholar
  2. Bradley, V. A., Welch, J. L., & Dick, D. J. (1989). Visuospatial working memory in Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 52(11), 1228–1235.CrossRefGoogle Scholar
  3. Brandt, J. (1991). The Hopkins Verbal Learning Test (HVLT): development of a new memory test with six equivalent forms. Clinical Neuropsychologist, 5, 125–142.CrossRefGoogle Scholar
  4. Bigler, E. D. (2001). Quantitative magnetic resonance imaging in traumatic brain injury. Journal of Head Trauma Rehabilitation, 16(2), 117–34.CrossRefPubMedGoogle Scholar
  5. Buki, A., & Povlishock, J. T. (2006). All roads lead to disconnection?—Traumatic axonal injury revisited. Acta Neurochir (Wien), 148(2), 181–193. discussion 193–184.CrossRefGoogle Scholar
  6. Calhoun, V. D., Stevens, M. C., Pearlson, G. D., & Kiehl, K. A. (2004). fMRI analysis with the general linear model: removal of latency-induced amplitude bias by incorporation of hemodynamic derivative terms. NeuroImage, 22(1), 252-257.CrossRefGoogle Scholar
  7. Chang, L., Speck, O., Miller, E. N., Braun, J., Jovicich, J., Koch, C., et al. (2001). Neural correlates of attention and working memory deficits in HIV patients. Neurology, 57(6), 1001–1007.PubMedGoogle Scholar
  8. Chang, L., Tomasi, D., Yakupov, R., Lozar, C., Arnold, S., Caparelli, E., et al. (2004). Adaptation of the attention network in human immunodeficiency virus brain injury. Annals of Neurology, 56(2), 259–272.CrossRefPubMedGoogle Scholar
  9. Chiaravalloti, N., Hillary, F., Ricker, J., Christodoulou, C., Kalnin, A., Liu, W. C., et al. (2005). Cerebral activation patterns during working memory performance in multiple sclerosis using FMRI. Journal of Clinical and Experimental Neuropsychology, 27(1), 33–54.CrossRefPubMedGoogle Scholar
  10. Christodoulou, C., DeLuca, J., Ricker, J. H., Madigan, N. K., Bly, B. M., Lange, G., et al. (2001). Functional magnetic resonance imaging of working memory impairment after traumatic brain injury. Journal of Neurology, Neurosurgery and Psychiatry, 71(2), 161–168.CrossRefGoogle Scholar
  11. Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., et al. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386(6625), 604–608.CrossRefPubMedGoogle Scholar
  12. Collette, F., Van der Linden, M., Bechet, S., & Salmon, E. (1999). Phonological loop and central executive functioning in Alzheimer’s disease. Neuropsychologia, 37(8), 905–918.CrossRefPubMedGoogle Scholar
  13. Courtney, S. M. (2004). Attention and cognitive control as emergent properties of information representation in working memory. Cognitive, Affective and Behavioral Neuroscience, 4(4), 501-516.CrossRefGoogle Scholar
  14. DeLuca, J., Genova, H. M., Hillary, F. G., & Wylie, G. (2008). Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. Journal of Neurological Sciences, 270(1–2), 28–39.CrossRefGoogle Scholar
  15. Demaree, H. A., DeLuca, J., Gaudino, E. A., & Diamond, B. J. (1999). Speed of information processing as a key deficit in multiple sclerosis: implications for rehabilitation. Journal of Neurology, Neurosurgery and Psychiatry, 67(5), 661–663.CrossRefGoogle Scholar
  16. Ernst, T., Chang, L., Jovicich, J., Ames, N., & Arnold, S. (2002). Abnormal brain activation on functional MRI in cognitively asymptomatic HIV patients. Neurology, 59(9), 1343–1349.PubMedGoogle Scholar
  17. Ernst, T., Chang, L., & Arnold, S. (2003). Increased glial metabolites predict increased working memory network activation in HIV brain injury. Neuroimage, 19(4), 1686–1693.CrossRefPubMedGoogle Scholar
  18. Forn, C., Barros-Loscertales, A., Escudero, J., Belloch, V., Campos, S., Parcet, M. A., et al. (2006). Cortical reorganization during PASAT task in MS patients with preserved working memory functions. Neuroimage, 31(2), 686–691.CrossRefPubMedGoogle Scholar
  19. Forn, C., Barros-Loscertales, A., Escudero, J., Benlloch, V., Campos, S., Parcet, M. A., et al. (2007). Compensatory activations in patients with multiple sclerosis during preserved performance on the auditory N-back task. Human Brain Mapping, 28(5), 424–430.CrossRefPubMedGoogle Scholar
  20. Fujiwara, E., Schwartz, M. L., Gao, F., Black, S. E., & Levine, B. (2008). Ventral frontal cortex functions and quantified MRI in traumatic brain injury. Neuropsychologia, 46(2), 461–474.CrossRefPubMedGoogle Scholar
  21. Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain, 123(Pt 7), 1293–1326.CrossRefPubMedGoogle Scholar
  22. Genova, H. M., Hillary, F. G., Wylie, G., Rympa, B., & DeLuca, J. (2009). An examination of processing speed impairments in multiple sclerosis using fMRI. Journal of the International Neuropsychological Society.Google Scholar
  23. Hillary, F. G. (2008). Neuroimaging of working memory dysfunction and the dilemma with brain reorganization hypotheses. Journal of the International Neuropsychological Society, 14(4), 526–534.CrossRefPubMedGoogle Scholar
  24. Hillary, F. G., & Biswal, B. (2007). The influence of neuropathology on the FMRI signal: a measurement of brain or vein? Clinical Neuropsychologist, 21(1), 58–72.CrossRefPubMedGoogle Scholar
  25. Hillary, F. G., Chiaravalloti, N. D., Ricker, J. H., Steffener, J., Bly, B. M., Lange, G., et al. (2003). An investigation of working memory rehearsal in multiple sclerosis using fMRI. Journal of Clinical and Experimental Neuropsychology, 25(7), 965–978.CrossRefPubMedGoogle Scholar
  26. Hillary, F. G., Genova, H. M., Chiaravalloti, N. D., Rypma, B., & DeLuca, J. (2006). Prefrontal modulation of working memory performance in brain injury and disease. Human Brain Mapping, 27(11), 837–847.CrossRefPubMedGoogle Scholar
  27. Kail, R., & Salthouse, T. A. (1994). Processing speed as a mental capacity. Acta Psychologica (Amst), 86(2–3), 199–225.CrossRefGoogle Scholar
  28. Kim, Y. H., Yoo, W. K., Ko, M. H., Park, C. H., Kim, S. T., & Na, D. L. (2009). Plasticity of the attentional network after brain injury and cognitive rehabilitation. Neurorehabilitation Neural Repair, 23(4), 468–77.CrossRefPubMedGoogle Scholar
  29. Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., et al. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10(3), 120–31.CrossRefPubMedGoogle Scholar
  30. Levine, B., Kovacevic, N., Nica, E. I., Cheung, G., Gao, F., Schwartz, M. L., et al. (2008). The Toronto traumatic brain injury study: injury severity and quantified MRI. Neurology, 70(10), 771–778.CrossRefPubMedGoogle Scholar
  31. Mainero, C., Caramia, F., Pozzilli, C., Pisani, A., Pestalozza, I., Borriello, G., et al. (2004). fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. Neuroimage, 21(3), 858–867.CrossRefPubMedGoogle Scholar
  32. Maruishi, M., Miyatani, M., Nakao, T., & Muranaka, H. (2007). Compensatory cortical activation during performance of an attention task by patients with diffuse axonal injury: a functional magnetic resonance imaging study. Journal of Neurology, Neurosurgery and Psychiatry, 78(2), 168–173.CrossRefGoogle Scholar
  33. McAllister, T. W., Saykin, A. J., Flashman, L. A., Sparling, M. B., Johnson, S. C., Guerin, S. J., et al. (1999). Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology, 53(6), 1300–1308.PubMedGoogle Scholar
  34. McAllister, T. W., Sparling, M. B., Flashman, L. A., Guerin, S. J., Mamourian, A. C., & Saykin, A. J. (2001). Differential working memory load effects after mild traumatic brain injury. Neuroimage, 14(5), 1004–1012.CrossRefPubMedGoogle Scholar
  35. McDowell, S., Whyte, J., & D'Esposito, M. (1997). Working memory impairments in traumatic brain injury: evidence from a dual-task paradigm. Neuropsychologia, 35(10), 1341–1353.CrossRefPubMedGoogle Scholar
  36. Merkley, T. L., Bigler, E. D., Wilde, E. A., McCauley, S. R., Hunter, J. V., & Levin, H. S. (2008). Diffuse changes in cortical thickness in pediatric moderate-to-severe traumatic brain injury. Journal of Neurotrauma, 25(11), 1343–5.CrossRefPubMedGoogle Scholar
  37. Morris, R. G., & Baddeley, A. D. (1988). Primary and working memory functioning in alzheimer-type dementia. Journal of Clinical and Experimental Neuropsychology, 10(2), 279–296.CrossRefPubMedGoogle Scholar
  38. Mostofsky, S. H., Schafer, J. G., Abrams, M. T., Goldberg, M. C., Flower, A. A., Boyce, A., et al. (2003). fMRI evidence that the neural basis of response inhibition is task-dependent. Brain Research Cognitive Brain Research, 17(2), 419–430.CrossRefPubMedGoogle Scholar
  39. Newsome, M. R., Scheibel, R. S., Steinberg, J. L., Troyanskaya, M., Sharma, R. G., Rauch, R. A., et al. (2007). Working memory brain activation following severe traumatic brain injury. Cortex, 43(1), 95–111.CrossRefPubMedGoogle Scholar
  40. Pardo, J. V., Fox, P. T., & Raichle, M. E. (1991). Localization of a human system for sustained attention by positron emission tomography. Nature, 349(6304), 61–64.CrossRefPubMedGoogle Scholar
  41. Penner, I. K., Rausch, M., Kappos, L., Opwis, K., & Radü, E. W. (2003). Analysis of impairment related functional architecture in MS patients during performance of different attention tasks. Journal of Neurology, 250(4), 461–472.CrossRefPubMedGoogle Scholar
  42. Perlstein, W. M., Cole, M. A., Demery, J. A., Seignourel, P. J., Dixit, N. K., Larson, M. J., et al. (2004). Parametric manipulation of working memory load in traumatic brain injury: behavioral and neural correlates. Journal of the International Neuropsychological Society, 10(5), 724–741.CrossRefPubMedGoogle Scholar
  43. Price, C. J., & Friston, K. J. (1999). Scanning patients with tasks they can perform. Human Brain Mapping, 8(2–3), 102–8.CrossRefPubMedGoogle Scholar
  44. Price, C. J., & Friston, K. J. (2002). Functional imaging studies of neuropsychological patients: applications and limitations. Neurocase, 8(5), 345–54.CrossRefPubMedGoogle Scholar
  45. Rao, S. M., Leo, G. J., & St Aubin-Faubert, P. (1989a). On the nature of memory disturbance in multiple sclerosis. Journal of Clinical Experimental Neuropsychology, 11(5), 699–712.CrossRefGoogle Scholar
  46. Rao, S. M., St Aubin-Faubert, P., & Leo, G. J. (1989b). Information processing speed in patients with multiple sclerosis. Journal of Clinical Experimental Neuropsychology, 11(4), 471–477.CrossRefGoogle Scholar
  47. Reitan, R. M. (1958). The relation of the trail-making test (TMT) to organic brain injury. Journal of Consulting Psychology, 19(5), 393–394.CrossRefGoogle Scholar
  48. Rorden, C., & Brett, M. (2000). Stereotaxic display of brain lesions. Behavioural Neurology, 12, 191–200.PubMedGoogle Scholar
  49. Rypma, B., & D'Esposito, M. (2000). Isolating the neural mechanisms of age-related changes in human working memory. Nature Neuroscience, 3(5), 509–515.CrossRefPubMedGoogle Scholar
  50. Rypma, B., Prabhakaran, V., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1999). Load-dependent roles of frontal brain regions in the maintenance of working memory. Neuroimage, 9(2), 216–226.CrossRefPubMedGoogle Scholar
  51. Rypma, B., Prabhakaran, V., Desmond, J. E., & Gabrieli, J. D. (2001). Age differences in prefrontal cortical activity in working memory. Psychology and Aging, 16(3), 371–384.CrossRefPubMedGoogle Scholar
  52. Rypma, B., Berger, J. S., & D’Esposito, M. (2002). The influence of working-memory demand and subject performance on prefrontal cortical activity. Journal of Cognitive Neuroscience, 14(5), 721–731.CrossRefPubMedGoogle Scholar
  53. Rypma, B., Berger, J. S., Prabhakaran, V., Bly, B. M., Kimberg, D. Y., Biswal, B. B., et al. (2006). Neural correlates of cognitive efficiency. Neuroimage, 33(3), 969–979.CrossRefPubMedGoogle Scholar
  54. Salthouse, T. A. (1992). Working-memory mediation of adult age differences in integrative reasoning. Memory & Cognition, 20(4), 413–423.Google Scholar
  55. Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403–428.CrossRefPubMedGoogle Scholar
  56. Salthouse, T. A., & Coon, V. E. (1993). Influence of task-specific processing speed on age differences in memory. Journal of Gerontology, 48(5), 245–255.Google Scholar
  57. Sanchez-Carrion, R., Fernandez-Espejo, D., Junque, C., Falcon, C., Bargallo, N., Roig, T., et al. (2008a). A longitudinal fMRI study of working memory in severe TBI patients with diffuse axonal injury. Neuroimage, 43(3), 421–429.CrossRefGoogle Scholar
  58. Sanchez-Carrion, R., Gomez, P. V., Junque, C., Fernandez-Espejo, D., Falcon, C., Bargallo, N., et al. (2008b). Frontal hypoactivation on functional magnetic resonance imaging in working memory after severe diffuse traumatic brain injury. Journal of Neurotrauma, 25(5), 479–494.CrossRefGoogle Scholar
  59. Saykin, A. J., Gur, R. C., Gur, R. E., Mozley, P. D., Mozley, L. H., Resnick, S. M., et al. (1991). Neuropsychological function in schizophrenia. Selective impairment in memory and learning. Archives of General Psychiatry, 48(7), 618–624.PubMedGoogle Scholar
  60. Saykin, A. J., Shtasel, D. L., Gur, R. E., Kester, D. B., Mozley, L. H., Stafiniak, P., et al. (1994). Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Archives of General Psychiatry, 51(2), 124–131.PubMedGoogle Scholar
  61. Scheibel, R. S., Newsome, M. R., Steinberg, J. L., Pearson, D. A., Rauch, R. A., Mao, H., et al. (2007). Altered brain activation during cognitive control in patients with moderate to severe traumatic brain injury. Neurorehabilitation Neural Repair, 21(1), 36–45.CrossRefPubMedGoogle Scholar
  62. Scheibel, R. S., Newsome, M. R., Troyanskaya, M., Steinberg, J. L., Goldstein, F. C., Mao, H., et al. (2009). Effects of severity of traumatic brain injury and brain reserve on cognitive-control related brain activation. Journal of Neurotrauma, 26(9), 1447-1461.CrossRefPubMedGoogle Scholar
  63. Smith, A. (1973). Symbol digit modalities task. Los Angeles: Western Psychological Services.Google Scholar
  64. Smith, A. (1997). Symbol digit modalities test (SDMT)—oral version. Los Angeles: The Psychological Corporation.Google Scholar
  65. Stuss, D. T., Ely, P., Hugenholtz, H., Richard, M. T., LaRochelle, S., Poirier, C. A., et al. (1985). Subtle neuropsychological deficits in patients with good recovery after closed head injury. Neurosurgery, 17(1), 41–47.CrossRefPubMedGoogle Scholar
  66. Sweet, L. H., Rao, S. M., Primeau, M., Durgerian, S., & Cohen, R. A. (2006). Functional magnetic resonance imaging response to increased verbal working memory demands among patients with multiple sclerosis. Human Brain Mapping, 27(1), 28–36.CrossRefPubMedGoogle Scholar
  67. Teasdale, G., & Jennett, B. (1974). Assessment of coma and impaired consciousness. A practical scale. Lancet, 2(7872), 81–84.CrossRefPubMedGoogle Scholar
  68. Trenerry, M. R., Crosson, B., DeBoe, J., & Leber, W. R. (1990). The Visual Search and Attention Test (VSAT). Odessa, Fla: Psychological Assessment Resources.Google Scholar
  69. Turner, G. R., & Levine, B. (2008). Augmented neural activity during executive control processing following diffuse axonal injury. Neurology, 71(11), 812–818.CrossRefPubMedGoogle Scholar
  70. Wechsler, D. (1997). Wechsler Adult Intelligence Scale – Third Edition. Administration and Scoring Manual. San Antonio: The Psychological Corporation.Google Scholar
  71. Wu, H. M., Huang, S. C., Hattori, N., Glenn, T. C., Vespa, P. M., Hovda, D. A., et al. (2004). Subcortical white matter metabolic changes remote from focal hemorrhagic lesions suggest diffuse injury after human traumatic brain injury. Neurosurgery, 55(6), 1306–1315.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Frank G. Hillary
    • 1
    • 2
    • 6
    Email author
  • Helen M. Genova
    • 3
  • John D. Medaglia
    • 1
  • Neal M. Fitzpatrick
    • 4
  • Kathy S. Chiou
    • 1
  • Britney M. Wardecker
    • 1
  • Robert G. FranklinJr.
    • 1
  • Jianli Wang
    • 4
  • John DeLuca
    • 3
    • 5
  1. 1.Psychology DepartmentPennsylvania State UniversityState CollegeUSA
  2. 2.Department of NeurologyHershey Medical CenterHersheyUSA
  3. 3.Kessler Foundation Research CenterWest OrangeUSA
  4. 4.Department of RadiologyHershey Medical CenterHersheyUSA
  5. 5.New Jersey Medical SchoolUniversity of Medicine and Dentistry at New JerseyNewarkUSA
  6. 6.Psychology DepartmentPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations