Advertisement

Brain Imaging and Behavior

, Volume 4, Issue 1, pp 109–120 | Cite as

Disturbed Functional Connectivity of Cortical Activation during Semantic Discrimination in Patients with Schizophrenia and Subjects at Genetic High-risk

  • Xiaobo LiEmail author
  • Craig A. Branch
  • Jay Nierenberg
  • Lynn E. DeLisi
Article

Abstract

Schizophrenia has a strong genetic component that is relevant to the understanding of the pathophysiology of the syndrome. Thus, recent investigations have shifted from studies of diagnosed patients with schizophrenia to examining their unaffected relatives. Previous studies found that during language processing, relatives thought to be at genetic high-risk for the disorder exhibit aberrant functional activation in regions of language processing, specifically in the left inferior frontal gyrus (Broca’s area). However, functional connectivity among the regions involved in language pathways is not well understood. In this study, we examined the functional connectivity between a seed located in Broca’s area and the remainder of the brain during a visual lexical decision task, in 20 schizophrenia patients, 21 subjects at genetic high risk for the disorder and 21 healthy controls. Both the high-risk subjects and patients showed significantly reduced activation correlations between seed and regions related to visual language processing. Compared to the high-risk subjects, the schizophrenia patients showed even fewer regions that were correlated with the seed regions. These results suggest that there is aberrant functional connectivity within cortical language circuitry in high-risk subjects and patients with schizophrenia. Broca’s area, which is one of the important regions for language processing in healthy controls, had a significantly reduced role in the high-risk subjects and patients with schizophrenia. Our findings are consistent with the existence of an underlying biological disturbance that begins in genetically at risk individuals and progresses to a greater extent in those who eventually develop schizophrenia.

Keywords

Schizophrenia Genetic high-risk Semantic discrimination task fMRI Functional connectivity 

Notes

Acknowledgements

The authors gratefully acknowledge Dr. Hilary Bertisch from New York University Medical School, for her role in recruiting and evaluating subjects. This project was partially supported by a grant from NIMH, R21 MH071720.

References

  1. Awh, E., Jonides, J., Smith, E. E., Schumacher, E. H., Koeppe, R. A., & Katz, S. (1996). Dissociation of storage and rehearsal in working memory: PET evidence. Psychological Science, 7, 25–31.CrossRefGoogle Scholar
  2. Beckmann, C., Jenkinson, M., & Smith, S. (2003). General multilevel linear modeling for group analysis in fMRI. NeuroImage, 20, 1052–1063.CrossRefPubMedGoogle Scholar
  3. Bokde, A. L. W., Lopez-Bayp, P., Meindl, T., Pechler, S., Born, C., Faltraco, F., et al. (2006). Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment. Brain, 129, 1113–1124.CrossRefPubMedGoogle Scholar
  4. Broca, P. (1861). Remarques sur le siège de la faculté du language articulé; suivies d’une observation d’aphemie. Bulletin de la Société Anatomique de Paris, 6, 330–357.Google Scholar
  5. Buchman, A. S., Garron, D. C., Trost-Cardamone, J. E., Wichter, M. D., & Schwartz, M. (1986). Word deafness: one hundred years later. Journal of Neurology, Neurosurgury, and Psychiatry, 49, 489–499.CrossRefGoogle Scholar
  6. Burns, J., Job, D., Bastin, M. E., Whalley, H., Macgillivray, T., & Johnstone, E. C. (2003). Structural disconnectivity in schizophrenia: a diffusion tensor magnetic resonance imaging study. British Journal of Psychiatry, 182, 439–443.CrossRefPubMedGoogle Scholar
  7. Citow, J. S., & Macdonald, R. (2001). Neuroanatomy and neurophysiology: A review. New York: Thieme.Google Scholar
  8. Cook, I. A., Bookheimer, S. Y., Mickes, L., Leuchter, A. F., & Kumar, A. (2007). Aging and brain activation with working memory tasks: an fMRI study of connectivity. nternational Journal of Geriatric Psychiatry, 22, 332–342.CrossRefGoogle Scholar
  9. Crow, T. J. (2004). Cerebral asymmetry and the lateralization of language: core deficits in schizophrenia as pointers to the gene. Current Opinion in Psychiatry, 17, 97–106.CrossRefGoogle Scholar
  10. Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (1987). California verbal learning test, Research edition. San Antonio: The Psychological Corporation.Google Scholar
  11. DeLisi, L. E., Sherrington, R., Shaw, S., Nanthakumar, B., Shields, G., Smith, A. B., et al. (2002). A genome-wide scan of 382 affected sibling-pairs with schizophrenia suggests linkage to chromosomes 2cen and 10p. American Journal of Psychiatry, 159, 803–812.CrossRefPubMedGoogle Scholar
  12. Demonet, J., Thierry, G., & Cardebat, D. (2005). Renewal of the neurophysiology of language: functional neuroimaging. Physiology Review, 85, 49–95.CrossRefGoogle Scholar
  13. Dunn, L. M., & Dunn, L. M. (1997). Peabody picture vocabulary test (3rd ed.). Circle Pines: American Guidance Service.Google Scholar
  14. Friston, K., & Frith, C. (1995). Schizophrenia: a disconnection syndrome? Clinical Neuroscience, 3, 89–97.PubMedGoogle Scholar
  15. Gottesman, I. I. (1994). Complications to the complex inheritance of schizophrenia. Clinical Genetics, 46, 116–123.PubMedCrossRefGoogle Scholar
  16. Heim, S., Alter, K., Ischebeck, A. K., Amunts, K., Eickhoff, S. B., Mohlberg, H., et al. (2005). The role of the left Brodmann's areas 44 and 45 in reading words and pseudowords. Cognitive Brain Research, 25(3), 982–993.CrossRefPubMedGoogle Scholar
  17. Hickok, G. (2000). Speech perception, conduction aphasia, and the functional neuroanatomy of language. In Y. Grodzinsky et al. (Eds.), Language and the brain: representation and processing. San Diego: Academic.Google Scholar
  18. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393–402.CrossRefPubMedGoogle Scholar
  19. Hickok, G., Erhard, P., Kassubek, J., Helms-Tillery, A. K., Naeve-Velguth, S., Strupp, J. et al. (1999). Auditory cortex participates in speech production. Cognitive Neuroscience Society Abstracts, 97.Google Scholar
  20. Jenkinson, M., & Smith, S. M. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5(2), 143–156.CrossRefPubMedGoogle Scholar
  21. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841.CrossRefPubMedGoogle Scholar
  22. Kaplan, E. F., Goodglass, H., & Weintraub, S. (1983). Boston naming test (2nd ed.). San Antonio: The Psychological Corporation.Google Scholar
  23. Kubicki, M., Westin, C.-F., Maier, S. E., Frumin, M., Nestor, P. G., Salisbury, D. F., et al. (2002). Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. American Journal of Psychiatry, 159, 813–820.CrossRefPubMedGoogle Scholar
  24. Kubicki, M., McCarley, R. W., Nestor, P. G., Huh, T., Kikinis, R., Shenton, M. E., et al. (2003). An fMRI study of semantic processing in men with schizophrenia. Neuroimage, 20, 1923–1933.CrossRefPubMedGoogle Scholar
  25. Kubicki, M., Westin, C. F., McCarley, R. W., & Shenton, M. E. (2005). The application of DTI to investigate white matter abnormalities in schizophrenia. Annals of the New York Academy of Sciences, 1064, 134–148.CrossRefPubMedGoogle Scholar
  26. Lee, C. U., Shenton, M. E., Salisbury, D. F., et al. (2002). Fusiform gyrus volume reduction in first-episode schizophrenia: a magnetic resonance imaging study. Archives of General Psychiatry, 59, 775–781.CrossRefPubMedGoogle Scholar
  27. Levelt, W. J. M., Praamstra, P., Meyer, A. S., Helenius, P., & Salmelin, R. (1998). An MEC study of picture naming. Journal of Cognitive Neuroscience, 10, 553–567.CrossRefPubMedGoogle Scholar
  28. Li, X., Branch, C., Ardekani, B., Bertisch, H., Hicks, C., & Delisi, L. E. (2007a). fMRI study of language activation in schizophrenia, schizoaffective disorder and in individuals genetically at high risk. Schizophrenia Research, 96, 14–24.CrossRefGoogle Scholar
  29. Li, X., Branch, C., Bertisch, H., Brown, K., Szule, K., Ardekani, B., et al. (2007b). An fMRI study of language processing in people at high genetic risk for schizophrenia. Schizophrenia Research, 91, 62–72.CrossRefGoogle Scholar
  30. Menon, V., Anagnoson, R. T., Mathalon, D. H., Glover, G. H., & Pfefferbaum, A. (2001). Functional neuroanatomy of auditory working memory in schizophrenia: relation to positive and negative symptoms. Neuroimage, 13, 433–446.CrossRefPubMedGoogle Scholar
  31. Mitchell, R. L., & Crow, T. J. (2005). Right hemisphere language functions and schizophrenia: the forgotten hemisphere? Brain, 128, 963–978.CrossRefPubMedGoogle Scholar
  32. Mitelman, S. A., & Buchabaum, M. S. (2007). Very poor outcome schizophrenia: clinical and neuroimaging aspects. International Review of Psychiatry, 19, 345–357.CrossRefPubMedGoogle Scholar
  33. Nierenberg, J., Salisbury, D. F., Levitt, J. J., David, E. A., McCarley, R. W., & Shenton, M. E. (2005). Reduced left angular gyrus volume in first-episode schizophrenia. American Journal of Psychiatry, 162, 1539–1542.CrossRefPubMedGoogle Scholar
  34. Nurnberger, T., Nennstiel, D., Jabs, T., Sacks, W. R., Hahlbrock, K., & Scheel, D. (1994). High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell, 78, 449–460.CrossRefPubMedGoogle Scholar
  35. Oh, T. M., McCarthy, R. A., & McKenna, P. J. (2002). Is there a schizophasia? A study applying the single case approach to formal thought disorder in schizophrenia. Neurocase, 8, 233–244.PubMedGoogle Scholar
  36. Pantelis, C., Velakoulis, D., McGorry, P. D., Wood, S. J., Suckling, J., et al. (2003). Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet, 361, 281–288.CrossRefPubMedGoogle Scholar
  37. Price, C. J. (2000). The anatomy of language: contributions from functional neuroimaging. Journal of Anatomy, 197, 335–359.CrossRefPubMedGoogle Scholar
  38. Sharp, D. J., Scott, S. K., Mehta, M. A., & Wise, R. J. S. (2006). The neural correlates of declining performance with age: evidence for age-related changes in cognitive control. Cerebral Cortex, 16, 1739–1749.CrossRefPubMedGoogle Scholar
  39. Smith, S. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155.CrossRefPubMedGoogle Scholar
  40. Sommer, I. E. C., Ramsey, N. E., & Kahn, R. S. (2001). Language lateralization in schizophrenia, an fMRI study. Schizophrenia Research, 52, 57–67.CrossRefPubMedGoogle Scholar
  41. Sommer, I. E., Aleman, A., Bouma, A., & Kahn, R. (2004a). Do woman really have more bilateral language representation than men? A meta-analysis of function imaging studies. Brain, 127, 1845–1852.CrossRefGoogle Scholar
  42. Sommer, I. E., Ramsey, N. F., Mandl, R. C., van Oel, C. J., & Kahn, R. S. (2004b). Language activation in monozygotic twins discordant for schizophrenia. British Journal of Psychiatry, 184, 128–135.CrossRefGoogle Scholar
  43. Sommer, I. E., Diederen, K. M., Blom, J. D., Willems, A., Kushan, L., Slotema, K., et al. (2008). Auditory verbal hallucinations predominantly activate the right inferior frontal area. Brain, 131, 3169–3177.CrossRefPubMedGoogle Scholar
  44. Stirling, J., Hellewell, J., Blakey, A., & Deakin, W. (2006). Thought disorder in schizophrenia is associated with both executive dysfunction and circumscribed impairments in semantic function. Psychological Medicine, 36, 475–484.CrossRefPubMedGoogle Scholar
  45. Velakoulis, D., Wood, S. J., Smith, D. J., Soulsby, B., Brewer, W., Leeton, L., et al. (2002). Increased duration of illness is associated with reduced volume in right medial temporal/anterior cingulated grey matter in patients with chronic schizophrenia. Schizophrenia Research, 57, 43–49.CrossRefPubMedGoogle Scholar
  46. Vernooij, M. W., Smits, M., Wielopolski, P. A., Houston, G. C., Krestin, G. P., & Lugt, A. (2007). Fiber density asymmetry of the arcuate fasciculus in relation to functional hemispheric language lateralization in both right- and left handed healthy subjects: a combined fMRI and DTI study. NeuroImage, 35, 1064–1076.CrossRefPubMedGoogle Scholar
  47. Walter, H., Wunderlich, A. P., Blankenhorn, M., Schafer, S., Tomczak, R., Spitzer, M., et al. (2003). No hypofrontality, but absence of prefrontal lateralization comparing verbal and spatial working memory in schizophrenia. Schizophrenia Research, 61(2–3), 175–184.CrossRefPubMedGoogle Scholar
  48. Walterfang, M., Wood, S. J., Velakoulis, D., & Pantelis, C. (2006). Neuropathological, neurogenetic and neuroimaging evidence for white matter pathology in schizophrenia. Neuroscience and Biobehavioral Review, 30, 918–948.CrossRefGoogle Scholar
  49. Wechsler, D. (1997a). Wechsler adult intelligence scale (3rd ed.). San Antonio: The Psychological Corporation.Google Scholar
  50. Wechsler, D. (1997b). Wechsler memory scale (3rd ed.). San Antonio: The Psychological Corporation.Google Scholar
  51. Wechsler, D. (2004). Wechsler intelligence scale for children (4th ed.). San Antonio: The Psychological Corporation.Google Scholar
  52. Wernicke, C. (1874). Der aphasiche symptomenkomplex. Breslau: Cohen and Weigert.Google Scholar
  53. Whalley, H. C., Simonotto, E., Marshall, I., Owens, D. G., Goddard, N. H., Johnstone, E. C., et al. (2005). Functional disconnectivity in subjects at high genetic risk of schizophrenia. Brain, 128, 2097–2108.CrossRefPubMedGoogle Scholar
  54. Whitford, T. J., Grieve, S. M., Farrow, T. F., Gomes, L., Brennan, J., Harris, A. W., et al. (2006). Progressive grey matter atrophy over the first 2–3 years of illness in first-episode schizophrenia: a tensor-based morphometry study. Neuroimage, 15, 511–519.CrossRefGoogle Scholar
  55. Whyte, M. C., Whalley, H. C., Simonotto, E., Flett, S., Shillcock, R., Marshall, I., et al. (2006). Event-related fMRI of word classification and successful word recognition in subjects at genetically enhanced risk of schizophrenia. Psychological Medicine, 36, 142–1439.CrossRefGoogle Scholar
  56. Wilkinson, G. S. (1993). The wide range achievement test (3rd ed.). Wilmington: Wide Range.Google Scholar
  57. Williamson, P. (2006). Mind, brain, and schizophrenia. UK: Oxford University Press.Google Scholar
  58. Woodcock, R. W., McGrew, K. S., & Mather, N. (2000). Woodcock-Johnson (3rd ed.). Itasca: Riverside.Google Scholar
  59. Woolrich, M. W., Ripley, B. D., Brady, J. M., & Smith, S. M. (2001). Temporal autocorrelation in univariate linear modelling of FMRI data. NeuroImage, 14(6), 1370–1386.CrossRefPubMedGoogle Scholar
  60. Woolrich, M. W., Behrens, T. E. J., Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2004). Multi-level linear modelling for FMRI group analysis using Bayesian inference. NeuroImage, 21(4), 1732–1747.CrossRefPubMedGoogle Scholar
  61. Worsley, K. J., Evans, A. C., Marrett, S., & Neelin, P. (1992). A three-dimensional statistical analysis for CBF activation studies in human brain. Journal of Cerebral Blood Flow and Metabolism, 12, 900–918.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xiaobo Li
    • 1
    Email author
  • Craig A. Branch
    • 1
    • 2
  • Jay Nierenberg
    • 2
  • Lynn E. DeLisi
    • 3
  1. 1.Department of Radiology, Albert Einstein College of MedicineYeshiva UniversityBronxUSA
  2. 2.Center for Advanced Brain ImagingNathan S. Kline Institute for Psychiatric ResearchOrangeburgUSA
  3. 3.Harvard Medical SchoolVA Boston Healthcare SystemBrocktonUSA

Personalised recommendations