Brain Imaging and Behavior

, Volume 4, Issue 1, pp 68–79 | Cite as

Quantitative Diffusion Tensor Imaging Tractography Metrics are Associated with Cognitive Performance Among HIV-Infected Patients

  • David F. Tate
  • Jared Conley
  • Robert H. Paul
  • Kathryn Coop
  • Song Zhang
  • Wenjin Zhou
  • David H. Laidlaw
  • Lynn E. Taylor
  • Timothy Flanigan
  • Bradford Navia
  • Ronald Cohen
  • Karen Tashima
Article

Abstract

There have been many studies examining HIV-infection-related alterations of magnetic resonance imaging (MRI) diffusion metrics. However, examining scalar diffusion metrics ignores the orientation aspect of diffusion imaging, which can be captured with tractography. We examined five different tractography metrics obtained from global tractography maps (global tractography FA, average tube length, normalized number of streamtubes, normalized weighted streamtube length, and normalized total number of tubes generated) for differences between HIV positive and negative patients and the association between the metrics and clinical variables of disease severity. We also examined the relationship between these metrics and cognitive performance across a wide range of cognitive domains for the HIV positive and negative patient groups separately. The results demonstrated a significant difference between the groups for global tractography FA (t = 2.13, p = 0.04), but not for any of the other tractography metrics examined (p-value range = 0.39 to 0.95). There were also several significant associations between the tractography metrics and cognitive performance (i.e., tapping rates, switching 1 and 2, verbal interference, mazes; r ≥ 0.42) for HIV infected patients. In particular, associations were noted between tractography metrics, speed of processing, fine motor control/speed, and executive function for the HIV-infected patients. These findings suggest that tractography metrics capture clinically relevant information regarding cognitive performance among HIV infected patients and suggests the importance of subtle white matter changes in examining cognitive performance.

Keywords

HIV DTI Neuropsychological performance Tractography 

References

  1. An, S. F., Ciardi, A., Giometto, B., Scaravilli, T., Gray, F., & Scaravilli, F. (1996). Investigation on the expression of major histocompatibility complex class II and cytokines and detection of HIV-1 DNA within brains of asymptomatic and symptomatic HIV-1-positive patients. Acta Neuropathologica, 91(5), 494–503.CrossRefPubMedGoogle Scholar
  2. Assaf, Y., & Pasternak, O. (2008). Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci, 34(1), 51–61.CrossRefPubMedGoogle Scholar
  3. Bell, J. E. (2004). An update on the neuropathology of HIV in the HAART era. Histopathology, 45(6), 549–559.CrossRefPubMedGoogle Scholar
  4. Budka, H., Costanzi, G., Cristina, S., Lechi, A., Parravicini, C., Trabattoni, R., et al. (1987). Brain pathology induced by infection with the human immunodeficiency virus (HIV). A histological, immunocytochemical, and electron microscopical study of 100 autopsy cases. Acta Neuropathologica, 75(2), 185–198.CrossRefPubMedGoogle Scholar
  5. Cherner, M., Cysique, L., Heaton, R. K., Marcotte, T. D., Ellis, R. J., Masliah, E., et al. (2007). Neuropathologic confirmation of definitional criteria for human immunodeficiency virus-associated neurocognitive disorders. J Neurovirol, 13(1), 23–28.CrossRefPubMedGoogle Scholar
  6. Cherner, M., Letendre, S., Heaton, R. K., Durelle, J., Marquie-Beck, J., Gragg, B., et al. (2005). Hepatitis C augments cognitive deficits associated with HIV infection and methamphetamine. Neurology, 64(8), 1343–1347.PubMedGoogle Scholar
  7. Correia, S., Lee, S. Y., Voorn, T., Tate, D. F., Paul, R. H., Zhang, S., et al. (2008). Quantitative tractography metrics of white matter integrity in diffusion-tensor MRI. Neuroimage, 42(2), 568–581.CrossRefPubMedGoogle Scholar
  8. Cossarizza, A. (2008). Apoptosis and HIV infection: about molecules and genes. Current Pharmaceutical Design, 14(3), 237–244.CrossRefPubMedGoogle Scholar
  9. Cysique, L. A., Maruff, P., & Brew, B. J. (2006). The neuropsychological profile of symptomatic AIDS and ADC patients in the pre-HAART era: a meta-analysis. Journal of the International Neuropsychological Society, 12(3), 368–382.CrossRefPubMedGoogle Scholar
  10. Davis, L. E., Hjelle, B. L., Miller, V. E., Palmer, D. L., Llewellyn, A. L., Merlin, T. L., et al. (1992). Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology, 42(9), 1736–1739.PubMedGoogle Scholar
  11. DeBoy, C. A., Zhang, J., Dike, S., Shats, I., Jones, M., Reich, D. S., et al. (2007). High resolution diffusion tensor imaging of axonal damage in focal inflammatory and demyelinating lesions in rat spinal cord. Brain, 130(Pt 8), 2199–2210.CrossRefPubMedGoogle Scholar
  12. Dewhurst, S., Gelbard, H. A., & Fine, S. M. (1996). Neuropathogenesis of AIDS. Molecular Medicine Today, 2(1), 16–23.CrossRefPubMedGoogle Scholar
  13. Ding, X. Q., Sun, Y., Braabeta, H., Illies, T., Zeumer, H., Lanfermann, H., et al. (2008). Evidence of Rapid Ongoing Brain Development Beyond Two Years of Age Detected by Fiber Tracking. AJNR. American Journal of Neuroradiology, 29(7), 1261–1265.Google Scholar
  14. Dubois, J., Dehaene-Lambertz, G., Soares, C., Cointepas, Y., Le Bihan, D., & Hertz-Pannier, L. (2008). Microstructural correlates of infant functional development: example of the visual pathways. J Neurosci, 28(8), 1943–1948.CrossRefPubMedGoogle Scholar
  15. Everall, I. P., Hansen, L. A., & Masliah, E. (2005). The shifting patterns of HIV encephalitis neuropathology. Neurotoxicity Research, 8(1–2), 51–61.CrossRefPubMedGoogle Scholar
  16. Everall, I. P., Luthert, P. J., & Lantos, P. L. (1993). Neuronal number and volume alterations in the neocortex of HIV infected individuals. Journal of Neurology, Neurosurgery and Psychiatry, 56(5), 481–486.CrossRefGoogle Scholar
  17. Ferrarese, C., Aliprandi, A., Tremolizzo, L., Stanzani, L., De Micheli, A., Dolara, A., et al. (2001). Increased glutamate in CSF and plasma of patients with HIV dementia. Neurology, 57(4), 671–675.PubMedGoogle Scholar
  18. Filippi, C. G., Ulug, A. M., Ryan, E., Ferrando, S. J., & van Gorp, W. (2001). Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. AJNR. American Journal of Neuroradiology, 22(2), 277–283.PubMedGoogle Scholar
  19. Gilmore, J. H., Lin, W., Corouge, I., Vetsa, Y. S., Smith, J. K., Kang, C., et al. (2007). Early Postnatal Development of Corpus Callosum and Corticospinal White Matter Assessed with Quantitative Tractography. AJNR. American Journal of Neuroradiology, 28(9), 1789–1795.Google Scholar
  20. Gray, F., Lescs, M. C., Keohane, C., Paraire, F., Marc, B., Durigon, M., et al. (1992). Early brain changes in HIV infection: neuropathological study of 11 HIV seropositive, non-AIDS cases. Journal of Neuropathology and Experimental Neurology, 51(2), 177–185.CrossRefPubMedGoogle Scholar
  21. Haughey, N. J., Nath, A., Mattson, M. P., Slevin, J. T., & Geiger, J. D. (2001). HIV-1 Tat through phosphorylation of NMDA receptors potentiates glutamate excitotoxicity. Journal of Neurochemistry, 78(3), 457–467.CrossRefPubMedGoogle Scholar
  22. Haverkos, H. W. (1998). HIV/AIDS and drug abuse: epidemiology and prevention. Journal of Addictive Diseases, 17(4), 91–103.CrossRefPubMedGoogle Scholar
  23. Heaton, R. K., Marcotte, T. D., Mindt, M. R., Sadek, J., Moore, D. J., Bentley, H., et al. (2004a). The impact of HIV-associated neuropsychological impairment on everyday functioning. Journal of the International Neuropsychological Society, 10(3), 317–331.CrossRefGoogle Scholar
  24. Heaton, R. K., Walden, M., Taylor, M. J., & Grant, I. (2004b). Revised comprehensive norms for an expanded Halstead-Reitan battery: demographically adjusted neuropsychological norms for African Americans and Caucasian Adults. Lutz: Psychological Assessment Resources, Inc.Google Scholar
  25. Hilsabeck, R. C., Castellon, S. A., & Hinkin, C. H. (2005). Neuropsychological aspects of coinfection with HIV and hepatitis C virus. Clinical Infectious Diseases, 41(Suppl 1), S38–44.CrossRefPubMedGoogle Scholar
  26. Kellogg, S., McHugh, P., Bell, K., Schluger, J., Schluger, R., LaForge, K., et al. (2003). The Kreek–McHugh–Schluger–Kellog scale: a new, rapid method for quantifying substance abuse and its possible applications. Drug and Alcohol Dependence, 69(2), 137–150.CrossRefPubMedGoogle Scholar
  27. Kim, A. Y., & Lauer, G. M. (2007). Pathogenesis of HIV-HCV Coinfection. Current Infectious Disease Reports, 9(4), 331–337.CrossRefPubMedGoogle Scholar
  28. Lin, W., Weinberg, E. M., Tai, A. W., Peng, L. F., Brockman, M. A., Kim, K. A., et al. (2008). HIV increases HCV replication in a TGF-beta1-dependent manner. Gastroenterology, 134(3), 803–811.CrossRefPubMedGoogle Scholar
  29. Lipton, S. A. (1991). HIV-related neurotoxicity. Brain Pathology, 1(3), 193–199.CrossRefPubMedGoogle Scholar
  30. Louboutin, J. P., Agrawal, L., Reyes, B. A., Van Bockstaele, E. J., & Strayer, D. S. (2007). Protecting neurons from HIV-1 gp120-induced oxidant stress using both localized intracerebral and generalized intraventricular administration of antioxidant enzymes delivered by SV40-derived vectors. Gene Therapy, 14(23), 1650–1661.CrossRefPubMedGoogle Scholar
  31. Masliah, E., Heaton, R. K., Marcotte, T. D., Ellis, R. J., Wiley, C. A., Mallory, M., et al. (1997). Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Annals of Neurology, 42(6), 963–972.CrossRefPubMedGoogle Scholar
  32. McArthur, J. C., McDermott, M. P., McClernon, D., St Hillaire, C., Conant, K., Marder, K., et al. (2004). Attenuated central nervous system infection in advanced HIV/AIDS with combination antiretroviral therapy. Archives of Neurology, 61(11), 1687–1696.CrossRefPubMedGoogle Scholar
  33. Paul, R. H., Lawrence, J., Williams, L. M., Richard, C. C., Cooper, N., & Gordon, E. (2005). Preliminary validity of “integneuro”: a new computerized battery of neurocognitive tests. International Journal of Neuroscience, 115(11), 1549–1567.CrossRefPubMedGoogle Scholar
  34. Perry, W., Hilsabeck, R., & Hassanein, T. (2008). Cognitive dysfunction in chronic hepatitis C: a reviewq. Digestive Diseases and Sciences, 53, 307–321.CrossRefPubMedGoogle Scholar
  35. Pfefferbaum, A., Rosenbloom, M. J., Adalsteinsson, E., & Sullivan, E. V. (2007). Diffusion tensor imaging with quantitative fibre tracking in HIV infection and alcoholism comorbidity: synergistic white matter damage. Brain, 130(Pt 1), 48–64.PubMedGoogle Scholar
  36. Pomara, N., Crandall, D. T., Choi, S. J., Johnson, G., & Lim, K. O. (2001). White matter abnormalities in HIV-1 infection: a diffusion tensor imaging study. Psychiatry Research, 106(1), 15–24.CrossRefPubMedGoogle Scholar
  37. Power, C., Kong, P. A., Crawford, T. O., Wesselingh, S., Glass, J. D., McArthur, J. C., et al. (1993). Cerebral white matter changes in acquired immunodeficiency syndrome dementia: alterations of the blood-brain barrier. Annals of Neurology, 34(3), 339–350.CrossRefPubMedGoogle Scholar
  38. Ragin, A. B., Storey, P., Cohen, B. A., Edelman, R. R., & Epstein, L. G. (2004). Disease burden in HIV-associated cognitive impairment: a study of whole brain imaging measures. Neurology, 63(12), 2293–2297.PubMedGoogle Scholar
  39. Ragin, A. B., Wu, Y., Storey, P., Cohen, B. A., Edelman, R. R., & Epstein, L. G. (2005). Diffusion tensor imaging of subcortical brain injury in patients infected with human immunodeficiency virus. Journal of Neurovirology, 11(3), 292–298.CrossRefPubMedGoogle Scholar
  40. Samet, J. H., Walley, A. Y., & Bridden, C. (2007). Illicit drugs, alcohol, and addiction in human immunodeficiency virus. Panminerva Medica, 49(2), 67–77.PubMedGoogle Scholar
  41. Schlosser, R. G., Nenadic, I., Wagner, G., Gullmar, D., von Consbruch, K., Kohler, S., et al. (2007). White matter abnormalities and brain activation in schizophrenia: a combined DTI and fMRI study. Schizophrenia Research, 89(1–3), 1–11.CrossRefPubMedGoogle Scholar
  42. Schmierer, K., Wheeler-Kingshott, C. A., Boulby, P. A., Scaravilli, F., Altmann, D. R., Barker, G. J., et al. (2007). Diffusion tensor imaging of post mortem multiple sclerosis brain. Neuroimage, 35(2), 467–477.CrossRefPubMedGoogle Scholar
  43. Silverstein, S. M., Berten, S., Olson, P., Paul, R., Willams, L. M., Cooper, N., et al. (2007). Development and validation of a World-Wide-Web-based neurocognitive assessment battery: WebNeuro. Behavior Research Methods, 39(4), 940–949.PubMedGoogle Scholar
  44. Skranes, J., Vangberg, T. R., Kulseng, S., Indredavik, M. S., Evensen, K. A., Martinussen, M., et al. (2007). Clinical findings and white matter abnormalities seen on diffusion tensor imaging in adolescents with very low birth weight. Brain, 130(Pt 3), 654–666.CrossRefPubMedGoogle Scholar
  45. Smit, C., van den Berg, C., Geskus, R., Berkhout, B., Coutinho, R., & Prins, M. (2008). Risk of hepatitis-related mortality increased among hepatitis C virus/HIV-coinfected drug users compared with drug users infected only with hepatitis C virus: a 20-year prospective study. Journal of Acquired Immune Deficiency Syndromes, 47(2), 221–225.CrossRefPubMedGoogle Scholar
  46. Sulkowski, M. S., Mehta, S. H., Torbenson, M. S., Higgins, Y., Brinkley, S. C., de Oca, R. M., et al. (2007). Rapid fibrosis progression among HIV/hepatitis C virus-co-infected adults. AIDS, 21(16), 2209–2216.CrossRefPubMedGoogle Scholar
  47. von Giesen, H. J., Heintges, T., Abbasi-Boroudjeni, N., Kucukkoylu, S., Koller, H., Haslinger, B. A., et al. (2004). Psychomotor slowing in hepatitis C and HIV infection. J Acquir Immune Defic Syndr, 35(2), 131–137.CrossRefGoogle Scholar
  48. Wilde, E. A., McCauley, S. R., Hunter, J. V., Bigler, E. D., Chu, Z., Wang, Z. J., et al. (2008). Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology, 70(12), 948–955.CrossRefPubMedGoogle Scholar
  49. Zhang, S., Demiralp, C., & Laidlaw, D. (2003). Visualizing diffusion tensor MR images using streamtubes and streamsurfaces. IEEE Transactions on Visualization and Computer Graphics, 9(4), 454–462.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • David F. Tate
    • 1
    • 2
  • Jared Conley
    • 1
  • Robert H. Paul
    • 3
  • Kathryn Coop
    • 4
  • Song Zhang
    • 5
  • Wenjin Zhou
    • 6
  • David H. Laidlaw
    • 6
  • Lynn E. Taylor
    • 4
    • 7
  • Timothy Flanigan
    • 4
    • 7
  • Bradford Navia
    • 8
  • Ronald Cohen
    • 9
  • Karen Tashima
    • 4
    • 7
  1. 1.Departments of Radiology and Psychiatry, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  2. 2.Department of Neurology, Boston University Medical Center Alzheimer’s Disease CenterBoston University Medical SchoolBostonUSA
  3. 3.Department of PsychologyUniversity of Missouri at St. LouisSt. LouisUSA
  4. 4.Center for AIDS ResearchThe Miriam HospitalProvidenceUSA
  5. 5.Department of Computer Science and EngineeringMississippi State UniversityStarkvilleUSA
  6. 6.Department of Computer ScienceBrown UniversityProvidenceUSA
  7. 7.Department of MedicineThe Warren Alpert Medical School at Brown UniversityProvidenceUSA
  8. 8.Department of MedicineTufts New England Medical CenterBostonUSA
  9. 9.Department of Psychiatry and Behavioral MedicineThe Warren Alpert School of Medicine at Brown UniversityProvidenceUSA

Personalised recommendations