Brain Imaging and Behavior

, Volume 4, Issue 1, pp 35–45 | Cite as

Basal Ganglia MR Relaxometry in Obsessive-Compulsive Disorder: T2 Depends Upon Age of Symptom Onset

  • Stephen Correia
  • Emily Hubbard
  • Jason Hassenstab
  • Agustin Yip
  • Josef Vymazal
  • Vit Herynek
  • Jay Giedd
  • Dennis L. Murphy
  • Benjamin D. Greenberg


Dysfunction in circuits linking frontal cortex and basal ganglia (BG) is strongly implicated in obsessive-compulsive disorder (OCD). On MRI studies, neuropsychiatric disorders with known BG pathology have abnormally short T2 relaxation values (a putative biomarker of elevated iron) in this region. We asked if BG T2 values are abnormal in OCD. We measured volume and T2 and T1 relaxation rates in BG of 32 adults with OCD and 33 matched controls. There were no group differences in volume or T1 values in caudate, putamen, or globus pallidus (GP). The OCD group had lower T2 values (suggesting higher iron content) in the right GP, with a trend in the same direction for the left GP. This effect was driven by patients whose OCD symptoms began from around adolescence to early adulthood. The results suggest a possible relationship between age of OCD onset and iron deposition in the basal ganglia.


Obsessive-compulsive disorder Basal ganglia Age of onset Iron Magnetic Resonance Imaging 



We wish to thank David Strong, Ph.D. for his contribution to the statistical analyses. This work was supported by the Intramural Research Program at the National Institute of Mental Health and the Department of Veterans Affairs. The contents of this manuscript do not represent the views of the Department of Veterans Affairs or the United States.


  1. Allkemper, T., Schwindt, W., Maintz, D., Heindel, W., & Tombach, B. (2004). Sensitivity of T2-weighted FSE sequences towards physiological iron depositions in normal brains at 1.5 and 3.0 T. European Radiology, 14(6), 1000–1004.CrossRefPubMedGoogle Scholar
  2. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders DSM-IV-TR fourth edition (text revision) (4th ed.). Washington: American Psychiatric Association.CrossRefGoogle Scholar
  3. Atmaca, M., Yildirim, B. H., Ozdemir, B. H., Aydin, B. A., Tezcan, A. E., & Ozler, A. S. (2006). Volumetric MRI assessment of brain regions in patients with refractory obsessive-compulsive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30(6), 1051–1057.CrossRefPubMedGoogle Scholar
  4. Aylward, E. H., Harris, G. J., Barta, P. E., Machlin, S. R., & Pearlson, G. D. (1996). Normal caudate nucleus in obsessive-compulsive disorder assessed by quantitative neuroimaging. Archives of General Psychiatry, 53(7), 577–584.PubMedGoogle Scholar
  5. Bartzokis, G. & Tishler, T. A. (2000). MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer’s and Huntingon’s disease. Cellular and Molecular Biology (Noisy-le-grand), 46(4), 821–833.Google Scholar
  6. Bartzokis, G., Garber, H. J., Marder, S. R., & Olendorf, W. H. (1990). MRI in tardive dyskinesia: shortened left caudate T2. Biological Psychiatry, 28(12), 1027–1036.CrossRefPubMedGoogle Scholar
  7. Bartzokis, G., Aravagiri, M., Oldendorf, W. H., Mintz, J., & Marder, S. R. (1993). Field dependent transverse relaxation rate increase may be a specific measure of tissue iron stores. Magnetic Resonance in Medicine, 29(4), 459–464.CrossRefPubMedGoogle Scholar
  8. Bartzokis, G., Tishler, T. A., Shin, I. S., Lu, P. H., & Cummings, J. L. (2004). Brain ferritin iron as a risk factor for age at onset in neurodegenerative diseases. Annals of the New York Academy of Sciences, 1012, 224–236.CrossRefPubMedGoogle Scholar
  9. Bartzokis, G., Tishler, T. A., Lu, P. H., Villablanca, P., Altshuler, L. L., Carter, M., et al. (2007). Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiology of Aging, 28(3), 414–423.CrossRefPubMedGoogle Scholar
  10. Baxter, L. R., Jr., Saxena, S., Brody, A. L., Ackermann, R. F., Colgan, M., Schwartz, J. M., et al. (1996). Brain mediation of obsessive-compulsive disorder symptoms: evidence from functional brain imaging studies in the human and nonhuman primate. Seminars in Clinical Neuropsychiatry, 1(1), 32–47.PubMedGoogle Scholar
  11. Blumenfeld, H. (2002). Neuroanatomy through clinical cases. Sunderland: Sinauer Assoc.Google Scholar
  12. Bourekas, E. C., Christoforidis, G. A., Abduljalil, A. M., Kangarlu, A., Chakeres, D. W., Spigos, D. G., et al. (1999). High resolution MRI of the deep gray nuclei at 8 Tesla. Journal of Computer Assisted Tomography, 23(6), 867–874.CrossRefPubMedGoogle Scholar
  13. Brass, S., Chen, N., Mulkern, R., & Bakshi, R. (2006). Magnetic resonance imaging of iron deposition in neurological disorders. Topics in Magnetic Resonance Imaging, 17(1), 31–40.CrossRefPubMedGoogle Scholar
  14. Brooks, R. A., Vymazal, J., Bulte, J. W., Baumgarner, C. D., & Tran, V. (1995). Comparison of T2 relaxation in blood, brain, and ferritin. Journal of Magnetic Resonance Imaging, 5(4), 446–450.CrossRefPubMedGoogle Scholar
  15. Carmona, S., Bassas, N., Rovira, M., Gispert, J. D., Soliva, J. C., Prado, M., et al. (2007). Pediatric OCD structural brain deficits in conflict monitoring circuits: a voxel-based morphometry study. Neuroscience Letters, 421(3), 218–223.CrossRefPubMedGoogle Scholar
  16. Carneiro, A. A. O., Vilela, G. R., de Araujo, D. B., & Baffa, O. (2006). MRI relaxometry: methods and applications. Brazilian Journal of Physics, 36(1A), 9–15.CrossRefGoogle Scholar
  17. Carneiro, A. M., Airey, D. C., Thompson, B., Zhu, C. B., Lu, L., Chesler, E. J., et al. (2009). Functional coding variation in recombinant inbred mouse lines reveals multiple serotonin transporter-associated phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 2047–2052.CrossRefPubMedGoogle Scholar
  18. Chen, J. C., Hardy, P. A., Kucharczyk, W., Clauberg, M., Joshi, J. G., Vourlas, A., et al. (1993). MR of human postmortem brain tissue: correlative study between T2 and assays of iron and ferritin in Parkinson and Huntington disease. AJNR. American Journal of Neuroradiology, 14(2), 275–281.PubMedGoogle Scholar
  19. Chiueh, C. C. (2001). Iron overload, oxidative stress, and axonal dystrophy in brain disorders. Pediatric Neurology, 25(2), 138–147.CrossRefPubMedGoogle Scholar
  20. Choi, J. S., Kim, H. S., Yoo, S. Y., Ha, T. H., Chang, J. H., Kim, Y. Y., et al. (2006). Morphometric alterations of anterior superior temporal cortex in obsessive-compulsive disorder. Depression and Anxiety, 23(5), 290–296.CrossRefPubMedGoogle Scholar
  21. Como, P. G., LaMarsh, J., & O’Brien, K. A. (2005). Obsessive-compulsive disorder in Tourette’s syndrome. Advances in Neurology, 96, 249–261.PubMedGoogle Scholar
  22. Delorme, R., Golmard, J. L., Chabane, N., Millet, B., Krebs, M. O., Mouren-Simeoni, M. C., et al. (2005). Admixture analysis of age at onset in obsessive-compulsive disorder. Psychological Medicine, 35(2), 237–243.CrossRefPubMedGoogle Scholar
  23. Demirkol, A., Erdem, H., Inan, L., Yigit, A., & Guney, M. (1999). Bilateral globus pallidus lesions in a patient with Tourette syndrome and related disorders. Biological Psychiatry, 46(6), 863–867.CrossRefPubMedGoogle Scholar
  24. Denys, D., van der Wee, N., Janssen, J., De Geus, F., & Westenberg, H. G. (2004a). Low level of dopaminergic D2 receptor binding in obsessive-compulsive disorder. Biological Psychiatry, 55(10), 1041–1045.CrossRefGoogle Scholar
  25. Denys, D., Zohar, J., & Westenberg, H. G. (2004b). The role of dopamine in obsessive-compulsive disorder: preclinical and clinical evidence. Journal of Clinical Psychiatry, 65(Suppl 14), 11–17.Google Scholar
  26. Drayer, B. (1989). Magnetic resonance imaging and extrapyramidal movement disorders. European Neurology, 29(Suppl 1), 9–12.CrossRefPubMedGoogle Scholar
  27. Drayer, B., Burger, P., Darwin, R., Riederer, S., Herfkens, R., & Johnson, G. A. (1986). MRI of brain iron. AJR. American Journal of Roentgenology, 147(1), 103–110.PubMedGoogle Scholar
  28. Drayer, B., Burger, P., Hurwitz, B., Dawson, D., & Cain, J. (1987). Reduced signal intensity on MR images of thalamus and putamen in multiple sclerosis: increased iron content? AJR. American Journal of Roentgenology, 149(2), 357–363.PubMedGoogle Scholar
  29. Escalona, R., Tupler, L. A., Saur, C. D., Krishnan, K. R., & Davidson, J. R. (1997). Screening for trauma history on an inpatient affective-disorders unit: a pilot study. Journal of Traumatic Stress, 10(2), 299–305.PubMedGoogle Scholar
  30. Ferrari, M. C., Busatto, G. F., McGuire, P. K., & Crippa, J. A. (2008). Structural magnetic ressonance imaging in anxiety disorders: an update of research findings. Revista Brasileira de Psiquiatria, 30(3), 251–264.CrossRefPubMedGoogle Scholar
  31. First, M., Spitzer, R., Gibbon, M., & Williams, J. (2002). Structured Interview for DSM-IV-TR Axis I Disorders, Reseach Version, Patient Edition (SCID-I/P). New York: Biometrics Research, New York State Psychiatric Institute.Google Scholar
  32. Friedman, A., Galazka-Friedman, J., Bauminger, E. R., & Koziorowski, D. (2006). Iron and ferritin in hippocampal cortex and substantia nigra in human brain–implications for the possible role of iron in dementia. Journal of Neurological Sciences, 248(1–2), 31–34.CrossRefGoogle Scholar
  33. Gerlach, M., Ben-Shachar, D., Riederer, P., & Youdim, M. B. (1994). Altered brain metabolism of iron as a cause of neurodegenerative diseases? Journal of Neurochemistry, 63(3), 793–807.PubMedGoogle Scholar
  34. Gilbert, A. R., Keshavan, M. S., Diwadkar, V., Nutche, J., Macmaster, F., Easter, P. C., et al. (2008). Gray matter differences between pediatric obsessive-compulsive disorder patients and high-risk siblings: a preliminary voxel-based morphometry study. Neuroscience Letters, 435(1), 45–50.CrossRefPubMedGoogle Scholar
  35. Goodman, W. K., Price, L. H., Rasmussen, S. A., Mazure, C., Delgado, P., Heninger, G. R., et al. (1989a). The Yale-Brown obsessive compulsive scale. II. Validity. Archives of General Psychiatry, 46(11), 1012–1016.Google Scholar
  36. Goodman, W. K., Price, L. H., Rasmussen, S. A., Mazure, C., Fleischmann, R. L., Hill, C. L., et al. (1989b). The Yale-Brown obsessive compulsive scale. I. Development, use, and reliability. Archives of General Psychiatry, 46(11), 1006–1011.Google Scholar
  37. Gorman, D. A., Zhu, H., Anderson, G. M., Davies, M., & Peterson, B. S. (2006). Ferritin levels and their association with regional brain volumes in Tourette’s syndrome. American Journal of Psychiatry, 163(7), 1264–1272.CrossRefPubMedGoogle Scholar
  38. Gossuin, Y., Burtea, C., Monseux, A., Toubeau, G., Roch, A., Muller, R. N., et al. (2004a). Ferritin-induced relaxation in tissues: an in vitro study. Journal of Magnetic Resonance Imaging, 20(4), 690–696.CrossRefGoogle Scholar
  39. Gossuin, Y., Muller, R. N., & Gillis, P. (2004b). Relaxation induced by ferritin: a better understanding for an improved MRI iron quantification. NMR in Biomedicine, 17(7), 427–432.CrossRefGoogle Scholar
  40. Grados, M. & Wilcox, H. C. (2007). Genetics of obsessive-compulsive disorder: a research update. Expert Review of Neurotherapeutics, 7(8), 967–980.CrossRefPubMedGoogle Scholar
  41. Greenberg, B. D., Altemus, M., & Murphy, D. L. (1997). The role of neurotransmitters and neuropeptites in obessive-compulsive disorder. International Review of Psychiatry, 9, 31–34.CrossRefGoogle Scholar
  42. Guillerman, R. P. (2000). The eye-of-the-tiger sign. Radiology, 217(3), 895–896.PubMedGoogle Scholar
  43. Haber, S. N. (2003). The primate basal ganglia: parallel and integrative networks. Journal of Chemical Neuroanatomy, 26(4), 317–330.CrossRefPubMedGoogle Scholar
  44. Hanna, G. L., Fingerlin, T. E., Himle, J. A., & Boehnke, M. (2005). Complex segregation analysis of obsessive-compulsive disorder in families with pediatric probands. Human Heredity, 60(1), 1–9.CrossRefPubMedGoogle Scholar
  45. Harrison, P. M. & Arosio, P. (1996). The ferritins: molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta, 1275(3), 161–203.CrossRefPubMedGoogle Scholar
  46. Herynek, V., Babis, M., Trunecka, P., Filip, K., Vymazal, J., Dezortova, M., et al. (2001). Chronic liver disease: relaxometry in the brain after liver transplantation. Magnetic Resonance Materials in Physics, Biology and Medicine, 12, 10–15.Google Scholar
  47. Hollerman, J. R., Tremblay, L., & Schultz, W. (2000). Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior. Progress in Brain Research, 126, 193–215.CrossRefPubMedGoogle Scholar
  48. Jenike, M. A., Breiter, H. C., Baer, L., Kennedy, D. N., Savage, C. R., Olivares, M. J., et al. (1996). Cerebral structural abnormalities in obsessive-compulsive disorder. A quantitative morphometric magnetic resonance imaging study. Archives of General Psychiatry, 53(7), 625–632.PubMedGoogle Scholar
  49. Kessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62(6), 617–627.CrossRefPubMedGoogle Scholar
  50. Kosta, P., Argyropoulou, M. I., Markoula, S., & Konitsiotis, S. (2006). MRI evaluation of the basal ganglia size and iron content in patients with Parkinson’s disease. Journal of Neurology, 253(1), 26–32.CrossRefPubMedGoogle Scholar
  51. Laplane, D., Levasseur, M., Pillon, B., Dubois, B., Baulac, M., Mazoyer, B., et al. (1989). Obsessive-compulsive and other behavioural changes with bilateral basal ganglia lesions. A neuropsychological, magnetic resonance imaging and positron tomography study. Brain, 112(Pt 3), 699–725.CrossRefPubMedGoogle Scholar
  52. Larson, S. J., Sances, A., Jr., & Wetzel, N. (1982). Cerebello-pallido-thalamic connections in man. Applied Neurophysiology, 45(6), 549–562.PubMedGoogle Scholar
  53. Loeffler, D. A., Connor, J. R., Juneau, P. L., Snyder, B. S., Kanaley, L., DeMaggio, A. J., et al. (1995). Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’s disease brain regions. Journal of Neurochemistry, 65(2), 710–724.PubMedCrossRefGoogle Scholar
  54. Martin, W. R., Ye, F. Q., & Allen, P. S. (1998). Increasing striatal iron content associated with normal aging. Movement Disorders, 13(2), 281–286.CrossRefPubMedGoogle Scholar
  55. Masterson, M. E., McGary, R., Schmitt, K., & Koutcher, J. A. (1989). Accuracy and reproducibility of image derived relaxation times on a clinical 1.5 T magnetic resonance scanner. Medical Physics, 16(2), 225–233.CrossRefPubMedGoogle Scholar
  56. Nestadt, G., Samuels, J., Riddle, M., Bienvenu, O. J., 3rd, Liang, K. Y., LaBuda, M., et al. (2000). A family study of obsessive-compulsive disorder. Archives of General Psychiatry, 57(4), 358–363.CrossRefPubMedGoogle Scholar
  57. Nestadt, G., Addington, A., Samuels, J., Liang, K. Y., Bienvenu, O. J., Riddle, M., et al. (2003). The identification of OCD-related subgroups based on comorbidity. Biological Psychiatry, 53(10), 914–920.CrossRefPubMedGoogle Scholar
  58. Nestadt, G., Di, C. Z., Riddle, M. A., Grados, M. A., Greenberg, B. D., Fyer, A. J., et al. (2008). Obsessive-compulsive disorder: subclassification based on co-morbidity. Psychol Med, 1–11.Google Scholar
  59. Pauls, D. L., Alsobrook, J. P., 2nd, Goodman, W., Rasmussen, S., & Leckman, J. F. (1995). A family study of obsessive-compulsive disorder. American Journal of Psychiatry, 152(1), 76–84.PubMedGoogle Scholar
  60. Peterson, B. S., Gore, J. C., Riddle, M. A., Cohen, D. J., & Leckman, J. F. (1994). Abnormal magnetic resonance imaging T2 relaxation time asymmetries in Tourette’s syndrome. Psychiatry Research, 55(4), 205–221.PubMedGoogle Scholar
  61. Pinero, D. J., Li, N. Q., Connor, J. R., & Beard, J. L. (2000). Variations in dietary iron alter brain iron metabolism in developing rats. Journal of Nutrition, 130(2), 254–263.PubMedGoogle Scholar
  62. Robinson, D., Wu, H., Munne, R. A., Ashtari, M., Alvir, J. M., Lerner, G., et al. (1995). Reduced caudate nucleus volume in obsessive-compulsive disorder. Archives of General Psychiatry, 52(5), 393–398.PubMedGoogle Scholar
  63. Rose, C., Butterworth, R., Zayed, J., Normandin, L., Todd, K., Michalak, A., et al. (1999). Manganese deposition in basal ganglia structures results from both portal-systemic shunting and liver dysfunction. Gastroenterology, 117, 640–644.CrossRefPubMedGoogle Scholar
  64. Rosenberg, D. R., Keshavan, M. S., O’Hearn, K. M., Dick, E. L., Bagwell, W. W., Seymour, A. B., et al. (1997). Frontostriatal measurement in treatment-naive children with obsessive-compulsive disorder. Archives of General Psychiatry, 54(9), 824–830.PubMedGoogle Scholar
  65. Rotge, J. Y., Guehl, D., Dilharreguy, B., Tignol, J., Bioulac, B., Allard, M., et al. (2008). Meta-analysis of brain volume changes in obsessive-compulsive disorder. Biol Psychiatry.Google Scholar
  66. Saint-Cyr, J. A., Taylor, A. E., & Nicholson, K. (1995). Behavior and the basal ganglia. Advances in Neurology, 65, 1–28.PubMedGoogle Scholar
  67. Samuels, J. F., Riddle, M. A., Greenberg, B. D., Fyer, A. J., McCracken, J. T., Rauch, S. L., et al. (2006). The OCD collaborative genetics study: methods and sample description. American Journal of Medical Genetics Part B, Neuropsychiatric Genetics, 141B(3), 201–207.CrossRefGoogle Scholar
  68. Saxena, S., Brody, A. L., Schwartz, J. M., & Baxter, L. R. (1998). Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. British Journal of Psychiatry, Suppl(35), 26–37.Google Scholar
  69. Scarone, S., Colombo, C., Livian, S., Abbruzzese, M., Ronchi, P., Locatelli, M., et al. (1992). Increased right caudate nucleus size in obsessive-compulsive disorder: detection with magnetic resonance imaging. Psychiatry Research, 45(2), 115–121.CrossRefPubMedGoogle Scholar
  70. Schooler, C., Revell, A. J., Timpano, K. R., Wheaton, M., & Murphy, D. L. (2008). Predicting genetic loading from symptom patterns in obsessive-compulsive disorder: a latent variable analysis. Depression and Anxiety, 25(8), 680–688.CrossRefPubMedGoogle Scholar
  71. Siger-Zajdel, M. & Selmaj, K. (2002). Hyperintense basal ganglia on T1-weighted magnetic resonance images in a patient with common variable immunodeficiency associated with elevated serum manganese. Journal of Neuroimaging, 12(1), 84–86.CrossRefPubMedGoogle Scholar
  72. Stathis, P., Panourias, I. G., Themistocleous, M. S., & Sakas, D. E. (2007). Connections of the basal ganglia with the limbic system: implications for neuromodulation therapies of anxiety and affective disorders. Acta Neurochirurgica. Supplementum, 97(Pt 2), 575–586.CrossRefGoogle Scholar
  73. Steffens, D. C., McDonald, W. M., Tupler, L. A., Boyko, O. B., & Krishnan, K. R. (1996). Magnetic resonance imaging changes in putamen nuclei iron content and distribution in normal subjects. Psychiatry Research, 68(1), 55–61.CrossRefPubMedGoogle Scholar
  74. Sudmeyer, M., Saleh, A., Wojtecki, L., Cohnen, M., Gross, J., Ploner, M., et al. (2006). Wilson’s disease tremor is associated with magnetic resonance imaging lesions in basal ganglia structures. Movement Disorders, 21(12), 2134–2139.CrossRefPubMedGoogle Scholar
  75. Suvorov, N. F. & Shuvaev, V. T. (2004). The role of the basal ganglia in organizing behavior. Neuroscience and Behavioral Physiology, 34(3), 229–234.CrossRefPubMedGoogle Scholar
  76. Szeszko, P. R., MacMillan, S., McMeniman, M., Chen, S., Baribault, K., Lim, K. O., et al. (2004). Brain structural abnormalities in psychotropic drug-naive pediatric patients with obsessive-compulsive disorder. American Journal of Psychiatry, 161(6), 1049–1056.CrossRefPubMedGoogle Scholar
  77. Szeszko, P. R., Christian, C., Macmaster, F., Lencz, T., Mirza, Y., Taormina, S. P., et al. (2008). Gray matter structural alterations in psychotropic drug-naive pediatric obsessive-compulsive disorder: an optimized voxel-based morphometry study. American Journal of Psychiatry, 165(10), 1299–1307.CrossRefPubMedGoogle Scholar
  78. van Grootheest, D. S., Cath, D. C., Beekman, A. T., & Boomsma, D. I. (2005). Twin studies on obsessive-compulsive disorder: a review. Twin Research and Human Genetics, 8(5), 450–458.PubMedGoogle Scholar
  79. Vymazal, J., Bulte, J. W., Frank, J. A., Di Chiro, G., & Brooks, R. A. (1993). Frequency dependence of MR relaxation times. I. Paramagnetic ions. Journal of Magnetic Resonance Imaging, 3(4), 637–640.CrossRefPubMedGoogle Scholar
  80. Vymazal, J., Brooks, R. A., Patronas, N., Hajek, M., Bulte, J. W., & Di Chiro, G. (1995a). Magnetic resonance imaging of brain iron in health and disease. Journal of Neurological Sciences, 134(Suppl), 19–26.CrossRefGoogle Scholar
  81. Vymazal, J., Hajek, M., Patronas, N., Giedd, J. N., Bulte, J. W., Baumgarner, C., et al. (1995b). The quantitative relation between T1-weighted and T2-weighted MRI of normal gray matter and iron concentration. Journal of Magnetic Resonance Imaging, 5(5), 554–560.CrossRefGoogle Scholar
  82. Vymazal, J., Righini, A., Brooks, R. A., Canesi, M., Mariani, C., Leonardi, M., et al. (1999). T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content. Radiology, 211(2), 489–495.PubMedGoogle Scholar
  83. Xu, X., Wang, Q., & Zhang, M. (2008). Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study. Neuroimage, 40(1), 35–42.CrossRefPubMedGoogle Scholar
  84. Yoo, S. Y., Roh, M. S., Choi, J. S., Kang, D. H., Ha, T. H., Lee, J. M., et al. (2008). Voxel-based morphometry study of gray matter abnormalities in obsessive-compulsive disorder. Journal of Korean Medical Science, 23(1), 24–30.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Stephen Correia
    • 1
  • Emily Hubbard
    • 2
  • Jason Hassenstab
    • 3
  • Agustin Yip
    • 4
  • Josef Vymazal
    • 5
  • Vit Herynek
    • 6
  • Jay Giedd
    • 7
  • Dennis L. Murphy
    • 8
  • Benjamin D. Greenberg
    • 4
  1. 1.Department of Psychiatry and Human Behavior, Alpert Medical SchoolBrown UniversityProvidenceUSA
  2. 2.School of MedicineOregon Health and Science University School of MedicinePortlandUSA
  3. 3.Department of Psychiatry and Human Behavior, Alpert Medical SchoolBrown UniversityProvidenceUSA
  4. 4.Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical SchoolBrown UniversityProvidenceUSA
  5. 5.MR Unit, Department of RadiodiagnosticsHospital Na HomolcaPragueCzech Republic
  6. 6.MRI Unit, Department of Radiodiagnostic and Interventional RadiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
  7. 7.Unit on Brain Imaging, Clinical Psychiatry Branch NIMH Intramural Research CenterNIH Clinical CenterBethesdaUSA
  8. 8.Laboratory of Clinical ScienceNIMH Intramural Research ProgramBethesdaUSA

Personalised recommendations