Advertisement

Brain Imaging and Behavior

, Volume 4, Issue 1, pp 5–21 | Cite as

Recruitment and Stabilization of Brain Activation Within a Working Memory Task; an fMRI Study

  • James F. PaskavitzEmail author
  • Lawrence H. Sweet
  • Jeremy Wellen
  • Karl G. Helmer
  • Stephen M. Rao
  • Ronald A. Cohen
Article

Abstract

Seventeen subjects underwent functional magnetic resonance imaging (fMRI) performing a 2-Back verbal working memory (VWM) task alternating with a control task to characterize the temporal dynamics of the specific brain regions involved in VWM. Serial sampling of 2-Back sub-blocks revealed many small areas of activation that grew and merged over time. Significant temporal effects for volume recruitment were seen in specific brain regions known to be involved in VWM, including the bilateral dorsolateral prefrontal (DLPFC), medial frontal (MFC), posterior parietal (PPC) cortices and also some extra-cortical and subcortical regions of interest (ROIs). Signal intensity increased over time in most ROIs recruited early in the task, including the DLPFC, MFC, and PPC but excluding dorsal premotor areas. MFC intensity increased rapidly then stabilized with time. The uniqueness of the MFC response raises the possibility that it drives the recruitment process. Increases in intensity and volume were associated with worsening VWM performance over time, suggesting that recruitment of brain resources is necessary in attempting to sustain difficult tasks. Worsening of performance over sub-blocks despite stable task demands reinforces this temporal “load effect”.

Keywords

fMRI Verbal working memory Temporal dynamics Recruitment 

References

  1. Akkal, D., Escola, L., Bioulac, B., & Burbaud, P. T. (2004). Time predictability modulates pre-supplementary motor area neuronal activity. NeuroReport, 15(8), 1283–1286.PubMedGoogle Scholar
  2. Bandettini, P., Wong, E. C., Hinks, R. S., Tikofsky, R. S., & Hyde, J. S. (1992). Time course EPI of human brain function during task activation. Magnetic Resonance in Medicine, 25(2), 390–397.CrossRefPubMedGoogle Scholar
  3. Bor, D., Duncan, J., Wiseman, R. J., & Owen, A. M. (2003). Encoding strategies dissociate prefrontal activity from working memory demand. Neuron, 37, 361–367.CrossRefPubMedGoogle Scholar
  4. Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. Neuroimage, 5(1), 49–62.CrossRefPubMedGoogle Scholar
  5. Breiter, H. C., Rauch, S. L., Kwong, K. K., Baker, J. R., Weisskoff, R. M., Kennedy, D. N., et al. (1996). Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder. Archives of General Psychiatry, 53(7), 595–606.PubMedGoogle Scholar
  6. Buckner, R. L., Bandettini, P. A., O’Craven, K. M., Savoy, R. L., Petersen, S. E., Raichle, M. E., et al. (1996). Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proceedings of the National Academy of Sciences USA, 93(25), 14878–14883.CrossRefGoogle Scholar
  7. Buxton, R., & Frank, L. R. (1997). A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. Journal of Cerebral Blood Flow and Metabolism, 17(1), 64–72.PubMedGoogle Scholar
  8. Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., et al. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9(1), 20–26.CrossRefPubMedGoogle Scholar
  9. Cohen, R. (1993). Neuropsychology of attention. New York: Plenum.Google Scholar
  10. Cohen, R. A., & Waters, W. F. (1985). Psychophysiological correlates of levels and stages of cognitive processing. Neuropsychologia, 23(2), 243–256.CrossRefPubMedGoogle Scholar
  11. Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., et al. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386(6625), 604–608.CrossRefPubMedGoogle Scholar
  12. Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory. Nature, 386(6625), 608–611.CrossRefPubMedGoogle Scholar
  13. Courtney, S. M., Petit, L., Haxby, J. V., & Ungerleider, L. G. (1998). The role of prefrontal cortex in working memory: examining the contents of consciousness. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1377), 1819–1828.CrossRefPubMedGoogle Scholar
  14. Cox, R. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.CrossRefPubMedGoogle Scholar
  15. D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998a). Functional MRI studies of spatial and nonspatial working memory. Brain Research. Cognitive Brain Research, 7(1), 1–13.CrossRefGoogle Scholar
  16. D’Esposito, M., Ballard, D., Aguirre, G. K., & Zarahn, E. (1998b). Human prefrontal cortex is not specific for working memory: a functional MRI study. Neuroimage, 8(3), 274–282.CrossRefGoogle Scholar
  17. Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 11, 820–829.CrossRefGoogle Scholar
  18. Feinstein, J. S., Goldin, P. R., Stein, M. B., Brown, G. G., & Paulus, M. P. (2002). Habituation of attentional networks during emotion processing. NeuroReport, 13(10), 1255–1258.CrossRefPubMedGoogle Scholar
  19. Foerster, B. U., Tomasi, D., & Caparelli, E. C. (2005). Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging. Magnetic Resonance in Medicine, 54(5), 1261–1267.CrossRefPubMedGoogle Scholar
  20. Friedman, H., Janas, J. D., & Goldman-Rakic, P. S. (1990). Enhancement of metabolic activity in the diencephalons of monkeys performing working memory tasks: a 2-deoxyglucose study in behaving rhesus monkeys. Journal of Cognitive Neuroscience, 2, 18–31.CrossRefGoogle Scholar
  21. Glahn, D. C., Kim, J., Cohen, M. S., Poutanen, V. P., Therman, S., Bava, S., et al. (2002). Maintenance and manipulation in spatial working memory: dissociations in the prefrontal cortex. Neuroimage, 17(1), 201–213.CrossRefPubMedGoogle Scholar
  22. Goense, J. B. M., JBM, N. K., & Logothetis, N. K. (2008). Neurophysiology of the BOLD fMRI signal in awake monkeys. Current Biology, 18(9), 631–640.CrossRefPubMedGoogle Scholar
  23. Gould, R. L., Arroyo, B., Brown, R. G., Owen, A. M., Bullmore, E. T., & Howard, R. J. (2006). Brain mechanisms of successful compensation during learning in Alzheimer disease. Neurology, 67(6), 1011–1017.CrossRefPubMedGoogle Scholar
  24. Haxby, J., Petit, L., Ungerleider, L. G., & Courtney, S. M. (2000). Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory. Neuroimage, 11, 380–391.CrossRefPubMedGoogle Scholar
  25. Hillary, F. G. (2008). Neuroimaging of working memory dysfunction and the dilemma with brain reorganization hypotheses. Journal of the International Neuropsychological Society, 14(4), 526–534.CrossRefPubMedGoogle Scholar
  26. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.Google Scholar
  27. Honey, G., Fu, C. H., Kim, J., et al. (2002). Effects of verbal working memory load on corticocortical connectivity modeled by path analysis of functional magnetic resonance imaging data. Neuroimage, 17(2), 573–582.CrossRefPubMedGoogle Scholar
  28. Jennings, J. R., & Hall, S. W. (1980). Recall, recognition, and rate: memory and the heart. Psychophysiology, 17, 37–46.CrossRefPubMedGoogle Scholar
  29. Jezzard, P., Matthews, P. M., & Smith, S. M. (2003). Functional MRI: An introduction to methods. New York: Oxford University Press.Google Scholar
  30. Kim, S. G. (2003). Progress in understanding functional imaging signals. Proceedings of the National Academy of Sciences USA, 100(7), 3550–3552.CrossRefGoogle Scholar
  31. Kollias, S. S., Golay, X., Boesiger, P., & Valavanis, A. (2000). Dynamic characteristics of oxygenation-sensitive MRI signal in different temporal protocols for imaging human brain activity. Neuroradiology, 42(8), 591–601.CrossRefPubMedGoogle Scholar
  32. Kwong, K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., et al. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences USA, 89(12), 5675–5679.CrossRefGoogle Scholar
  33. Langers, D. R., Backes, W. H., & van Dijk, P. (2003). Spectrotemporal features of the auditory cortex: the activation in response to dynamic ripples. Neuroimage, 20(1), 265–275.CrossRefPubMedGoogle Scholar
  34. Lawrence, N., Ross, T. J., Hoffmann, R., et al. (2003). Multiple neuronal networks mediate sustained attention. Journal of Cognitive Neuroscience, 15(7), 1028–1038.CrossRefPubMedGoogle Scholar
  35. Leung, H.-C., Gore, J. C., & Goldman-Rakic, P. S. (2002). Sustained mnemonic response in the human middle frontal gyrus during on-line storage of spatial memoranda. Journal of Cognitive Neuroscience, 14(4), 659–671.CrossRefPubMedGoogle Scholar
  36. Liu, J. Z., Shan, Z. Y., Zhang, L. D., Sahgal, V., Brown, R. W., & Yue, G. H. (2003). Human brain activation during sustained and intermittent submaximal fatigue muscle contractions: an FMRI study. Journal of Neurophysiology, 90(1), 300–312.CrossRefPubMedGoogle Scholar
  37. Lowe, M. J., & Russell, D. P. (1999). Treatment of baseline drifts in fMRI time series analysis. Journal of Computer Assisted Tomography, 23(3), 463–473.CrossRefPubMedGoogle Scholar
  38. Mathews, P., & Jezzard, P. (2004). Functional magnetic resonance imaging. Journal of Neurology, Neurosurgery and Psychiatry, 75(1), 6–12.Google Scholar
  39. McCarthy, G., Puce, A., Luby, M., Belger, A., & Allison, T. (1996). Magnetic resonance imaging studies of functional brain activation: analysis and interpretation. Electroencephalography and Clinical Neurophysiology. Supplement, 47, 15–31.PubMedGoogle Scholar
  40. Menon, R., & Goodyear, B. G. (2001). Spatial and temporal resolution in FMRI. In P. Jezzard, P. M. Matthews & S. M. Smith (Eds.), Functional magnetic resonance imaging: An introduction to methods (pp. 145–158). New York: Oxford University Press.Google Scholar
  41. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59.CrossRefPubMedGoogle Scholar
  42. Paskavitz, J. F., Sweet, L. H., Wellen, J., Helmer, K. G., & Cohen, R. A. (2003a). Dynamic changes in brain volumes of activation during sustained working memory observed with FMRI. Journal of International Neuropsychological Society, 9(2), 321.Google Scholar
  43. Paskavitz, J., Sweet, L., Wellen, J., & Helmer, C. R. A. (2003b). The role of the medial thalamus in working memory; an FMRI study. Neuroimage, 19(2), S497.Google Scholar
  44. Pfeuffer, J., Van de Moortele, P. F., Ugurbil, K., Hu, X., & Glover, G. H. (2002). Correction of physiologically induced global off-resonance effects in dynamic echo-planar and spiral functional imaging. Magnetic Resonance in Medicine, 47(2), 344–353.CrossRefPubMedGoogle Scholar
  45. Poellinger, A., Thomas, R., Lio, P., Lee, A., Makris, N., Rosen, B. R., et al. (2001). Activation and habituation in olfaction—an fMRI study. Neuroimage, 13(4), 547–560.CrossRefPubMedGoogle Scholar
  46. Rosen, B. R., Aronen, H. J., Kwong, K. K., Belliveau, J. W., Hamberg, L. M., & Fordham, J. A. (1993). Advances in clinical neuroimaging: functional MR imaging techniques. Radiographics, 13(4), 889–896.PubMedGoogle Scholar
  47. Rosen, B. R., Buckner, R. L., & Dale, A. M. (1998). Event-related functional MRI: past, present, and future. Proceedings of the National Academy of Sciences USA, 95(3), 773–780.CrossRefGoogle Scholar
  48. Royall, D. R., Lauterbach, E. C., Cummings, J. L., Reeve, A., Rummans, T. A., Kaufer, D. I., et al. (2002). Executive control function: a review of its promise and challenges for clinical research. A report from the Committee on Research of the American Neuropsychiatric Association. Journal of Neuropsychiatry and Clinical Neurosciences, 14(4), 377–405.PubMedGoogle Scholar
  49. Samuel, M., Williams, S. C., Leigh, P. N., Simmons, A., Chakraborti, S., Andrew, C. M., et al. (1998). Exploring the temporal nature of hemodynamic responses of cortical motor areas using functional MRI. Neurology, 51(6), 1567–1575.PubMedGoogle Scholar
  50. Savoy, R. L. (2001). History and future directions of human brain mapping and functional neuroimaging. Acta Psychologcia (Amst), 107(1–3), 9–42.CrossRefGoogle Scholar
  51. Savoy, R. L. (2005). Experimental design in brain activation MRI: cautionary tales. Brain Research Bulletin, 67(5), 361–367.CrossRefPubMedGoogle Scholar
  52. Selemon, L., & Goldman-Rakic, P. S. (1988). Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. Journal of Neuroscience, 8(11), 4049–4068.PubMedGoogle Scholar
  53. Simmons, A., Moore, E., & Williams, S. C. (1999). Quality control for functional magnetic resonance imaging using automated data analysis and Shewhart charting. Magnetic Resonance in Medicine, 41(6), 1274–1278.CrossRefPubMedGoogle Scholar
  54. Smith, E. E., & Jonides, J. (1997). Working memory: a view from neuroimaging. Cognitive Psychology, 33(1), 5–42.CrossRefPubMedGoogle Scholar
  55. Sobel, N., Prabhakaran, V., Zhao, Z., Desmond, J. E., Glover, G. H., Sullivan, E. V., et al. (2000). Time course of odorant-induced activation in the human primary olfactory cortex. Journal of Neurophysiology, 83(1), 537–551.PubMedGoogle Scholar
  56. Stephenson, C. M., Suckling, J., Dirckx, S. G., Ooi, C., McKenna, P. J., Bisbrown-Chippendale, R., et al. (2003). GABAergic inhibitory mechanisms for repetition-adaptivity in large-scale brain systems. Neuroimage, 19(4), 1578–1588.CrossRefPubMedGoogle Scholar
  57. Sweet, L. H., Rao, S. M., Primeau, M., Mayer, A. R., & Cohen, R. A. (2004). Functional magnetic resonance imaging of working memory among multiple sclerosis patients. Journal of Neuroimaging, 14(2), 150–157.PubMedGoogle Scholar
  58. Sweet, L. H., Paskavitz, J. F., O’Connor, M. J., Browndyke, J. N., Wellen, J. W., & Cohen, R. A. (2005). FMRI correlates of the WAIS-III symbol search subtest. Journal of International Neuropsychological Society, 11(4), 471–476.Google Scholar
  59. Sweet, L. H., Rao, S. M., Primeau, M., Durgerian, S., & Cohen, R. A. (2006). Functional magnetic resonance imaging response to increased verbal working memory demands among patients with multiple sclerosis. Human Brain Mapping, 27(1), 28–36.CrossRefPubMedGoogle Scholar
  60. Sweet, L. H., Paskavitz, J. F., Haley, A. P., Gunstad, J. J., Nyalakanti, P. K., & Cohen, R. A. (2008). Imaging phonological similarity effects in verbal working memory. Neuropsychologia, 46(4), 1114–1123.CrossRefPubMedGoogle Scholar
  61. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: 3-Dimensional proportional system: An approach to cerebral imaging. Stuttgart: Thieme Medical.Google Scholar
  62. Tan, H. Y., Sust, S., Buckholtz, J. W., Mattay, V. S., Meyer-Lindenberg, A., Egan, M. F., et al. (2006). Dysfunctional prefrontal regional specialization and compensation in schizophrenia. American Journal of Psychiatry, 163(11), 1969–1977.CrossRefPubMedGoogle Scholar
  63. Williams, L. M., Brown, K. J., Das, P., Boucsein, W., Sokolov, E. N., Brammer, M. J., et al. (2004). The dynamics of cortico-amygdala and autonomic activity over the experimental time course of fear perception. Brain Research. Cognitive Brain Research, 21(1), 114–123.CrossRefPubMedGoogle Scholar
  64. Williams, L. M., Das, P., Liddell, B., Olivieri, G., Peduto, A., Brammer, M. J., et al. (2005). BOLD, sweat and fears: fMRI and skin conductance distinguish facial fear signals. NeuroReport, 16(1), 49–52.CrossRefPubMedGoogle Scholar
  65. Zaharchuk, G., Mandeville, J. B., Bogdanov, A. A., Jr., Weissleder, R., Rosen, B. R., & Marota, J. J. (1999). Cerebrovascular dynamics of autoregulation and hypoperfusion. An MRI study of CBF and changes in total and microvascular cerebral blood volume during hemorrhagic hypotension. Stroke, 30(10), 2197–2204. discussion 2204-5.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • James F. Paskavitz
    • 1
    • 5
    Email author
  • Lawrence H. Sweet
    • 2
  • Jeremy Wellen
    • 3
  • Karl G. Helmer
    • 3
  • Stephen M. Rao
    • 4
  • Ronald A. Cohen
    • 2
  1. 1.Department of NeurologyUniversity of Massachusetts Memorial HealthcareWorcesterUSA
  2. 2.Department of Psychiatry and Human BehaviorBrown Medical SchoolProvidenceUSA
  3. 3.Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterUSA
  4. 4.Department of NeurologyMedical College of WisconsinMilwaukeeUSA
  5. 5.Perceptive InformaticsWalthamUSA

Personalised recommendations