Brain Imaging and Behavior

, 3:317

Age-Related Changes in Motor Control During Unimanual Movements

  • Keith M. McGregor
  • Jason G. Craggs
  • Michelle L. Benjamin
  • Bruce Crosson
  • Keith D. White


Event related fMRI was used to investigate age-related changes in BOLD activity during the execution of right hand finger movements in internally or externally guided tasks. All of the younger adults exhibited typical (positive) BOLD responses in supplementary motor areas (SMA) bilaterally, and in the left sensorimotor cortex. Negative BOLD responses were found, however, in the right sensorimotor cortex of the younger adults. In contrast, all but one of the older adults had positive BOLD responses in SMA and sensorimotor cortex of both hemispheres. Across both tasks, older adults showed increased activity (relative to younger adults) in right ventrolateral premotor and medial premotor areas, but more so during the internally guided task. Overall, these results suggest age-related changes in motor control. The younger adults’ hemispheric asymmetry and the lack thereof in older adults suggest a fundamental change in interhemispheric communication as part of the normal aging process.


fMRI Negative BOLD Aging Sensorimotor cortex 


  1. Addamo, P.K., Farrow, M., Hoy, K.E., And, B., & Georgiou-Karistianis, J.L.Nellie, in press. The influence of task characteristics on younger and older adult motor overflow. The Quarterly Journal of Experimental Psychology. Google Scholar
  2. Baliz, Y., Armatas, C., Farrow, M., Hoy, K. E., Fitzgerald, P. B., Bradshaw, J. L., et al. (2005). The influence of attention and age on the occurrence of mirror movements. Journal of the International Neuropsychological Society, 11(7), 855–862. doi:10.1017/S1355617705051003.CrossRefPubMedGoogle Scholar
  3. Behzadi, Y., & Liu, T. T. (2006). Caffeine reduces the initial dip in the visual BOLD response at 3 T. NeuroImage, 32, 9–15. doi:10.1016/j.neuroimage.2006.03.005.CrossRefPubMedGoogle Scholar
  4. Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychology and Aging, 17, 85–100. doi:10.1037/0882-7974.17.1.85.CrossRefPubMedGoogle Scholar
  5. Chainay, H., Krainik, A., Tanguy, M. L., Gerardin, E., Le Bihan, D., & Lehericy, S. (2004). Foot, face and hand representation in the human supplementary motor area. Neuroreport, 15, 765–769. doi:10.1097/00001756-200404090-00005.CrossRefPubMedGoogle Scholar
  6. Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., et al. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61, 1166–1170.PubMedGoogle Scholar
  7. Colcombe, S. J., Kramer, A. F., McAuley, E., Erickson, K. I., & Scalf, P. (2004). Neurocognitive aging and cardiovascular fitness: recent findings and future directions. Journal of Molecular Neuroscience, 24, 9–14. doi:10.1385/JMN:24:1:009.CrossRefPubMedGoogle Scholar
  8. Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, an International Journal, 29, 162–173. doi:10.1006/cbmr.1996.0014.CrossRefPubMedGoogle Scholar
  9. Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex (New York, N.Y.), 18(5), 1201–1209. doi:10.1093/cercor/bhm155.CrossRefGoogle Scholar
  10. Fink, G. R., Frackowiak, R. S., Pietrzyk, U., & Passingham, R. E. (1997). Multiple nonprimary motor areas in the human cortex. Journal of Neurophysiology, 77, 2164–2174.PubMedGoogle Scholar
  11. Haaland, K. Y., Elsinger, C. L., Mayer, A. R., Durgerian, S., & Rao, S. M. (2004). Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization. Journal of Cognitive Neuroscience, 16(4), 621–636. doi:10.1162/089892904323057344.CrossRefPubMedGoogle Scholar
  12. Heuninckx, S., Wenderoth, N., & Swinnen, S.P. (2009) Age-related reduction in the differential pathways involved in internal and external movement generation. Neurobiology of Aging.Google Scholar
  13. Hoy, K. E., Fitzgerald, P. B., Bradshaw, J. L., Armatas, C. A., & Georgiou-Karistianis, N. (2004). Investigating the cortical origins of motor overflow. Brain Research. Brain Research Reviews, 46(3), 315–327. doi:10.1016/j.brainresrev.2004.07.013.CrossRefPubMedGoogle Scholar
  14. Hummel, F., Saur, R., Lasogga, S., Plewnia, C., Erb, M., Wildgruber, D., et al. (2004). To act or not to act. Neural correlates of executive control of learned motor behavior. NeuroImage, 23, 1391–1401. doi:10.1016/j.neuroimage.2004.07.070.CrossRefPubMedGoogle Scholar
  15. Kastrup, A., Baudewig, J., Schnaudigel, S., Huonker, R., Becker, L., Sohns, J. M., et al. (2008). Behavioral correlates of negative BOLD signal changes in the primary somatosensory cortex. Neuroimage, 41(4), 1364–1371.CrossRefPubMedGoogle Scholar
  16. Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., et al. (1999). Ageing, fitness and neurocognitive function. Nature, 400, 418–419. doi:10.1038/22682.CrossRefPubMedGoogle Scholar
  17. Krampe, R. T., Engbert, R., & Kliegl, R. (2002). The effects of expertise and age on rhythm production: adaptations to timing and sequencing constraints. Brain and Cognition, 48, 179–194. doi:10.1006/brcg.2001.1312.CrossRefPubMedGoogle Scholar
  18. Kuhtz-Buschbeck, J. P., Mahnkopf, C., Holzknecht, C., Siebner, H., Ulmer, S., & Jansen, O. (2003). Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study. The European Journal of Neuroscience, 18(12), 3375–3387. doi:10.1111/j.1460-9568.2003.03066.x.CrossRefPubMedGoogle Scholar
  19. Liu, T. T., Behzadi, Y., Restom, K., Uludag, K., Lu, K., Buracas, G. T., et al. (2004). Caffeine alters the temporal dynamics of the visual BOLD response. NeuroImage, 23, 1402–1413. doi:10.1016/j.neuroimage.2004.07.061.CrossRefPubMedGoogle Scholar
  20. Manson, S. C., Wegner, C., Filippi, M., Barkhof, F., Beckmann, C., Ciccarelli, O., et al. (2008). Impairment of movement-associated brain deactivation in multiple sclerosis: further evidence for a functional pathology of interhemispheric neuronal inhibition. Experimental Brain Research, 187(1), 25–31. doi:10.1007/s00221-008-1276-1.CrossRefGoogle Scholar
  21. Marks, B. L., Madden, D. J., Bucur, B., Provenzale, J. M., White, L. E., Cabeza, R., et al. (2007). Role of aerobic fitness and aging on cerebral white matter integrity. Annals of the New York Academy of Sciences, 1097, 171–174. doi:10.1196/annals.1379.022.CrossRefPubMedGoogle Scholar
  22. Meister, I., Krings, T., Foltys, H., Boroojerdi, B., Müller, M., Töpper, R., et al. (2005). Effects of long-term practice and task complexity in musicians and nonmusicians performing simple and complex motor tasks: Implications for cortical motor organization. Hum Brain Mapp, 25(3), 345–352, Jul.Google Scholar
  23. Meyer, B. U., Röricht, S., & Woiciechowsky, C. (1998). Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices. Annals of Neurology, 43(3), 360–369. doi:10.1002/ana.410430314.CrossRefPubMedGoogle Scholar
  24. Naccarato, M., Calautti, C., Jones, P. S., Day, D. J., Carpenter, T. A., & Baron, J. C. (2006). Does healthy aging affect the hemispheric activation balance during paced index-to-thumb opposition task? An fMRI study. NeuroImage, 32, 1250–1256. doi:10.1016/j.neuroimage.2006.05.003.CrossRefPubMedGoogle Scholar
  25. Newton, J. M., Sunderland, A., & Gowland, P. A. (2005). fMRI signal decreases in ipsilateral primary motor cortex during unilateral hand movements are related to duration and side of movement. NeuroImage, 24, 1080–1087. doi:10.1016/j.neuroimage.2004.10.003.CrossRefPubMedGoogle Scholar
  26. Oliviero, A., Profice, P., Tonali, P. A., Pilato, F., Saturno, E., Dileone, M., et al. (2006). Effects of aging on motor cortex excitability. Neuroscience Research, 55, 74–77. doi:10.1016/j.neures.2006.02.002.CrossRefPubMedGoogle Scholar
  27. Pasley, B. N., Inglis, B. A., & Freeman, R. D. (2007). Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex. NeuroImage, 36, 269–276. doi:10.1016/j.neuroimage.2006.09.015.CrossRefPubMedGoogle Scholar
  28. Peinemann, A., Lehner, C., Conrad, B., & Siebner, H. R. (2001). Age-related decrease in paired-pulse intracortical inhibition in the human primary motor cortex. Neuroscience Letters, 313, 33–36. doi:10.1016/S0304-3940(01)02239-X.CrossRefPubMedGoogle Scholar
  29. Rao, S. M., Binder, J. R., Bandettini, P. A., Hammeke, T. A., Yetkin, F. Z., Jesmanowicz, A., et al. (1993). Functional magnetic resonance imaging of complex human movements. Neurology, 43(11), 2311–2318.PubMedGoogle Scholar
  30. Riecker, A., Groschel, K., Ackermann, H., Steinbrink, C., Witte, O., & Kastrup, A. (2006). Functional significance of age-related differences in motor activation patterns. NeuroImage, 32, 1345–1354. doi:10.1016/j.neuroimage.2006.05.021.CrossRefPubMedGoogle Scholar
  31. Sale, M. V., & Semmler, J. G. (2005). Age-related differences in corticospinal control during functional isometric contractions in left and right hands. J Appl Physiol, 99, 1483–1493. doi:10.1152/japplphysiol.00371.2005.CrossRefPubMedGoogle Scholar
  32. Shmuel, A., Augath, M., Oeltermann, A., & Logothetis, N. K. (2006). Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nature Neuroscience, 9, 569–577. doi:10.1038/nn1675.CrossRefPubMedGoogle Scholar
  33. Stefanovic, B., Warnking, J. M., Kobayashi, E., Bagshaw, A. P., Hawco, C., Dubeau, F., et al. (2005). Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges. NeuroImage, 28, 205–215. doi:10.1016/j.neuroimage.2005.05.038.CrossRefPubMedGoogle Scholar
  34. Stefanovic, B., Warnking, J. M., & Pike, G. B. (2004). Hemodynamic and metabolic responses to neuronal inhibition. NeuroImage, 22, 771–778. doi:10.1016/j.neuroimage.2004.01.036.CrossRefPubMedGoogle Scholar
  35. Talelli, P., Ewas, A., Waddingham, W., Rothwell, J. C., & Ward, N. S. (2008). Neural correlates of age-related changes in cortical neurophysiology. Neuroimage, 40(4), 1772–1781.CrossRefPubMedGoogle Scholar
  36. Verstynen, T., Diedrichsen, J., Albert, N., Aparicio, P., & Ivry, R. B. (2005). Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity. Journal of Neurophysiology, 93(3), 1209–1222. doi:10.1152/jn.00720.2004.CrossRefPubMedGoogle Scholar
  37. Ward, N.S., Swayne, O.B., & Newton, J.M. (2008) Age-dependent changes in the neural correlates of force modulation: An fMRI study. Neurobiology of Aging, 29(9), 1434–1446.CrossRefPubMedGoogle Scholar
  38. Wu, T., & Hallett, M. (2005). The influence of normal human ageing on automatic movements. The Journal of Physiology, 562(Pt 2), 605–615. doi:10.1113/jphysiol.2004.076042.PubMedGoogle Scholar
  39. Yousry, T. A., Schmid, U. D., Alkadhi, H., Schmidt, D., Peraud, A., Buettner, A., et al. (1997). Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain, 120(Pt 1), 141–157. doi:10.1093/brain/120.1.141.CrossRefPubMedGoogle Scholar

Copyright information

© GovernmentEmployee: US Department of Veterans Affairs 2009

Authors and Affiliations

  • Keith M. McGregor
    • 1
    • 2
  • Jason G. Craggs
    • 3
  • Michelle L. Benjamin
    • 1
    • 3
  • Bruce Crosson
    • 1
    • 3
  • Keith D. White
    • 1
    • 2
    • 3
    • 4
  1. 1.Brain Rehabilitation Research CenterMalcom Randall VA Medical CenterGainesvilleUSA
  2. 2.Department of PsychologyUniversity of FloridaGainesvilleUSA
  3. 3.Department of Clinical and Health PsychologyUniversity of FloridaGainesvilleUSA
  4. 4.Department of PsychologyUniversity of FloridaGainesvilleUSA

Personalised recommendations