Brain Imaging and Behavior

, 3:240 | Cite as

Abnormal Asymmetry of the Face N170 Repetition Effect in Male Patients with Chronic Schizophrenia

  • Toshiaki Onitsuka
  • Kevin M. Spencer
  • Lisa C. Lucia
  • Martha E. Shenton
  • Robert W. McCarley
  • Margaret A. Niznikiewicz


The N170 face repetition effect has been proposed to reflect early identity processing that underlies the acquisition of familiarity for novel faces. It was reported that the N170 face repetition effect was lateralized to the right hemisphere. Since it has been postulated that reduced or reversed brain asymmetry may be importantly related to schizophrenia pathology, the present study examined whether or not male patients with chronic schizophrenia show reduced or reversed asymmetry in the N170 face repetition effect. Seventeen male schizophrenia patients and 13 male healthy controls participated. Event-related potentials were recorded to unrepeated and repeated faces. Patients with schizophrenia showed a bilateral N170 reduction to repeated and unrepeated faces compared to healthy subjects (F[1,28] = 8.01, p = 0.009). Schizophrenia patients showed a significant decrease in N170 amplitude to repeated faces at the left occipitotemporal electrode (t[16] = 2.91, p = 0.01), whereas healthy subjects showed a significant decrease at the right occipitotemporal electrode (t[12] = 2.36, p = 0.04). These results suggest abnormal asymmetry of the N170 face repetition effect in schizophrenia.


Schizophrenia Face recognition Visual evoked potentials N170 Repetition effect Abnormal asymmetry 



The authors gratefully acknowledge the administrative support of Marie Fairbanks and the assistance of Yoji Hirano, M.D., Ph.D., Rakibul Mannan, Ph.D., Meredith C. Klump, B.A., and Sarah M. Rabbitt, B.A.


  1. Allison, T., Puce, A., Spencer, D. D., et al. (1999). Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. Cerebral Cortex (New York, N.Y.), 9, 415–430. doi: 10.1093/cercor/9.5.415.CrossRefGoogle Scholar
  2. American Psychiatric, Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric.Google Scholar
  3. Bentin, S., Allison, T., Puce, A., et al. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8, 551–565.CrossRefGoogle Scholar
  4. Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: an empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 1–47. doi: 10.1162/08989290051137585.PubMedCrossRefGoogle Scholar
  5. Campanella, S., Hanoteau, C., Depy, D., et al. (2000). Right N170 modulation in a face discrimination task: an account for categorical perception of familiar faces. Psychophysiology, 37, 796–806. doi: 10.1017/S0048577200991728.PubMedCrossRefGoogle Scholar
  6. Crow, T. J., Ball, J., Bloom, S., et al. (1989). Schizophrenia as an anatomy of development of cerebral asymmerty. Archives of General Psychiatry, 46, 1145–1150.PubMedGoogle Scholar
  7. Ekman, P., & Friesen, W. (1978). Facial Action Coding System. Palo Alto: Consulting Psychologists.Google Scholar
  8. Harris, A., & Nakayama, K. (2007). Rapid face-selective adaptation of an early extrastriate component in MEG. Cerebral Cortex (New York, N.Y.), 17, 63–70. doi: 10.1093/cercor/bhj124.CrossRefGoogle Scholar
  9. Heisz, J. J., Watter, S., & Shedden, J. M. (2006a). Progressive N170 habituation to unattended faces. Vision Research, 46, 47–56. doi: 10.1016/j.visres.2005.09.028.PubMedCrossRefGoogle Scholar
  10. Heisz, J. J., Watter, S., & Shedden, J. M. (2006b). Automatic face identity encoding at the N170. Vision Research, 46, 4604–4614. doi: 10.1016/j.visres.2006.09.026.PubMedCrossRefGoogle Scholar
  11. Herrmann, M. J., Ellgring, H., & Fallgatter, A. J. (2004). Early-stage face processing dysfunction in patients with schizophrenia. The American Journal of Psychiatry, 161, 915–917. doi: 10.1176/appi.ajp.161.5.915.PubMedCrossRefGoogle Scholar
  12. Kircher, T. T., Rapp, A., Grodd, W., et al. (2004). Mismatch negativity responses in schizophrenia: a combined fMRI and whole-head MEG study. The American Journal of Psychiatry, 161, 294–304. doi: 10.1176/appi.ajp.161.2.294.PubMedCrossRefGoogle Scholar
  13. Lennox, B. R., Park, S. B. G., Jones, P. B., et al. (1999). Spatial and temporal mapping of neural activity associated with auditory hallucinations. Lancet, 353, 644. doi: 10.1016/S0140-6736(98)05923-6.PubMedCrossRefGoogle Scholar
  14. Niznikiewicz, M., Donnino, R., McCarley, R. W., et al. (2000). Abnormal angular gurus asymmetry in schizophrenia. The American Journal of Psychiatry, 157, 428–437. doi: 10.1176/appi.ajp.157.3.428.PubMedCrossRefGoogle Scholar
  15. Obayashi, C., Nakashima, T., Maekawa, T., et al. (2008). Abnormal N170 modulation in frequency change in male patients with chronic schizophrenia. Biological Psychiatry, 63, 822S.Google Scholar
  16. Onitsuka, T., Niznikiewicz, M. A., Spencer, K. M., et al. (2006). Functional and structural deficits in brain regions subserving face perception in schizophrenia. The American Journal of Psychiatry, 163, 455–462. doi: 10.1176/appi.ajp.163.3.455.PubMedCrossRefGoogle Scholar
  17. Rapcsak, S. Z., Polster, M. R., Glisky, M. L., et al. (1996). False recognition of unfamiliar faces following right hemisphere damage: neuropsychological and anatomical observations. Cortex, 32, 593–611.PubMedGoogle Scholar
  18. Semlitsch, H. V., Anderer, P., Schuster, P., et al. (1986). A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology, 23, 695–703. doi: 10.1111/j.1469-8986.1986.tb00696.x.PubMedCrossRefGoogle Scholar
  19. Shan-Ming, Y., Flor-Henry, P., Dayi, C., et al. (1985). Imbalance of hemispheric functions in the major psychosis: a study of handedness in the People’s Republic of China. Biological Psychiatry, 20, 906–917. doi: 10.1016/0006-3223(85)90216-1.CrossRefGoogle Scholar
  20. Sommer, I., Ramsey, N., Kahn, R., et al. (2001). Handedness, language lateralization and anatomical asymmetry in schizophrenia: meta-analysis. The British Journal of Psychiatry, 178, 344–351. doi: 10.1192/bjp.178.4.344.PubMedCrossRefGoogle Scholar
  21. Wada, Y., & Yamamoto, T. (2001). Selective impairment of facial recognition due to a haematoma restricted to the right fusiform and lateral occipital region. Journal of Neurology, Neurosurgery, and Psychiatry, 71, 254–257. doi: 10.1136/jnnp.71.2.254.PubMedCrossRefGoogle Scholar
  22. Wechsler, D. (1981). Wechsler adult intelligence scale-revised. New York, NY: Jovanovich.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Toshiaki Onitsuka
    • 1
    • 2
  • Kevin M. Spencer
    • 1
  • Lisa C. Lucia
    • 1
  • Martha E. Shenton
    • 1
    • 3
  • Robert W. McCarley
    • 1
  • Margaret A. Niznikiewicz
    • 1
    • 4
  1. 1.Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Boston VA Healthcare SystemBrockton Division and Harvard Medical SchoolBrocktonUSA
  2. 2.Department of Neuropsychiatry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  3. 3.Surgical Planning Laboratory, MRI Division, Brigham and Women’s Hospital, Department of RadiologyHarvard Medical SchoolBostonUSA
  4. 4.Department of Psychiatry (116A), Boston VA Healthcare System, Brockton DivisionHarvard Medical SchoolBrocktonUSA

Personalised recommendations