Brain Imaging and Behavior

, Volume 3, Issue 2, pp 202–211 | Cite as

Differential Contributions of Lateral Prefrontal Cortex Regions to Visual Memory Processes

  • Nicole C. R. McLaughlinEmail author
  • Dana W. Moore
  • Carl Fulwiler
  • Rafeeque Bhadelia
  • David A. Gansler


The prefrontal cortex (PFC) is the seat of higher level control operations, with recognition and working memory processes critical to those operations. While not strictly organized by the principle of localization, certain functions are clearly more associated with one region than another within PFC dynamic systems. We set out to test the hypothesis that active visual memory comparison (making judgments of novelty) was most associated with the ventrolateral prefrontal cortex (VLPFC), while the monitoring and manipulation of visual information was most associated with the mid-dorsolateral prefrontal cortex (mid-DLPFC). The current study used magnetic resonance volumetry to define the VLPFC and mid-DLPFC as regions of interest (ROIs), and analyzed those in relation to types of visual memory processes. We observed a functional dissociation of working memory within the PFC corresponding to comparison versus monitoring processes. One of the blocks of the monitoring and manipulation task showed a significant positive relationship with left, right, and total mid-DLPFC volume, with no significant relationship to the VLPFC. Performance on a memory comparison task bore a significant positive relationship with right and total VLPFC volume, and no relationship with the mid-DLPFC.


Neuropsychology Working memory Prefrontal cortex Structural imaging Volumetry 


  1. Baddeley, A. D. (1999). Essentials of human memory. East Sussex, UK: Psychology Press.Google Scholar
  2. Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), Recent advances in learning and motivation (Volume 8). New York: Academic Press.Google Scholar
  3. Blatter, D. D., Bigler, E. D., Gale, S. D., Johnson, S. C., Anderson, C. V., Burnett, B. M., et al. (1995). Quantitative volumetric analysis of brain MR: normative database spanning 5 decades of life. AJNR. American Journal of Neuroradiology, 16, 241–151.PubMedGoogle Scholar
  4. Bonilha, L., Molnar, C., Horner, M. D., Anderson, B., Forster, L., George, M. S., et al. (2008). Neurocognitive deficits and prefrontal cortical atrophy in patients with schizophrenia. Schizophrenia Research, 101, 142–151. doi: 10.1016/j.schres.2007.11.023.PubMedCrossRefGoogle Scholar
  5. Brooks, L. R. (1968). Spatial and verbal components of the act of recall. Canadian Journal of Psychology, 22, 349–368. doi: 10.1037/h0082775.Google Scholar
  6. Cannon, T. D., Hennah, W., van Erp, T. G. M., Thompson, P. M., Lonnqvist, J., Huttunen, M., et al. (2005). Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short and long-term memory. Archives of General Psychiatry, 62(11), 1205–1213. doi: 10.1001/archpsyc.62.11.1205.PubMedCrossRefGoogle Scholar
  7. Carmona, S., Vilarroya, O., Bielsa, A., Tremols, V., Soliva, J. C., Rovira, M., et al. (2005). Global and regional gray matter reductions in ADHD: a voxel-based morphometric study. Neuroscience Letters, 389, 88–93. doi: 10.1016/j.neulet.2005.07.020.PubMedCrossRefGoogle Scholar
  8. Champod, A. S., & Petrides, M. (2007). Dissociable roles of the posterior parietal and the prefrontal cortex in manipulation and monitoring processes. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 14837–14842. doi: 10.1073/pnas.0607101104.PubMedCrossRefGoogle Scholar
  9. Cornette, L., Dupont, P., Bormans, G., Mortelmans, L., & Orban, G. A. (2001). Separate neural correlates for the mnemonic components of successive discrimination and working memory tasks. Cerebral Cortex (New York, N.Y.), 11, 59–72. doi: 10.1093/cercor/11.1.59.CrossRefGoogle Scholar
  10. Csernansky, J. G., Gillespie, S. K., Dierker, D. L., Anticevic, A., Wang, L., Barch, D. M., et al. (2008). Symmetric abnormalities in sulcal patterning in schizophrenia. NeuroImage, 43(3), 44–446. doi: 10.1016/j.neuroimage.2008.07.034.CrossRefGoogle Scholar
  11. Curtis, C. E., Zald, D. H., & Paldo, J. V. (2000). Organization of working memory within the human prefrontal cortex: a PET study of self-ordered object working memory. Neuropsychologia, 38, 1503–1510. doi: 10.1016/S0028-3932(00) 00062-2.PubMedCrossRefGoogle Scholar
  12. Doris, A., Belton, E., Ebmeier, K. P., Glabus, M. F., & Marshall, I. (2004). Reduction of cingulate gray matter density in poor outcome bipolar illness. Psychiatry Research: Neuroimaging, 130, 153–159. doi: 10.1016/j.pscychresns.2003.09.002.PubMedCrossRefGoogle Scholar
  13. Fuster, J. M. (2008). The Prefrontal Cortex (4th ed.). Elsevier: Amsterdam.Google Scholar
  14. Glahn, D. C., Laird, A. R., Ellison-Wright, I., Thelen, S. M., Robinson, J. L., Lancaster, J. L., Bullmore, E., & Fox, P. T. (2008). Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. Biological Psychiatry Google Scholar
  15. Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and the regulation of behavior by representational memory. In American Physiological Society, Handbook of Physiology (pp. 373–417). Bethesda, MDGoogle Scholar
  16. Goldman-Rakic, P. S., & Leung, H. (2002). Functional architecture of the dorsolateral prefrontal cortex in monkeys and humans. In D. T. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function, pp. 85–95. New York: Oxford University Press.CrossRefGoogle Scholar
  17. Granon, S., & Poucet, B. (1995). Medial prefrontal lesions in the rat and spatial navigation: evidence for impaired planning. Behavioral Neuroscience, 109, 474–484. doi: 10.1037/0735-7044.109.3.474.PubMedCrossRefGoogle Scholar
  18. Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2004). Structural brain variation and general intelligence. NeuroImage, 23, 425–433. doi: 10.1016/j.neuroimage.2004.04.025.PubMedCrossRefGoogle Scholar
  19. Hakamata, Y., Matsuoka, Y., Inagaki, M., Nagamine, M., Hara, E., Imoto, S., et al. (2007). Structure of orbitofrontal cortex and its longitudinal course in cancer-related post-traumatic stress disorder. Neuroscience Research, 59, 383–389. doi: 10.1016/j.neures.2007.08.012.PubMedCrossRefGoogle Scholar
  20. Haznedar, M. M., Roversi, F., Pallanti, S., Baldini-Rossi, N., Schnur, D. B., LiCalzi, E. M., et al. (2005). Fronto-thalamo-striatal gray and white matter volumes and anisotropy of their connections in bipolar spectrum illnesses. Biological Psychiatry, 57, 733–742. doi: 10.1016/j.biopsych.2005.01.002.PubMedCrossRefGoogle Scholar
  21. Hillary, F. G. (2008). Neuroimaging of working memory dysfunction and the dilemma with brain reorganization hypotheses. Journal of the International Neuropsychological Society, 14, 526–534. doi: 10.1017/S1355617708080788.PubMedCrossRefGoogle Scholar
  22. Kasai, K., Yamasue, H., Gilbertson, M. W., Shenton, M. E., Rauch, S. L., & Pitman, R. K. (2008). Evidence for acquired pregenual anterior cingulate gray matter loss from a twin study of combat-related post-traumatic stress disorder. Biological Psychiatry, 63, 550–556. doi: 10.1016/j.biopsych.2007.06.022.PubMedCrossRefGoogle Scholar
  23. Kates, W. R., Frederikse, M., Mostofsky, S., Folley, B. S., Cooper, K., Mazur-Hopkins, P., et al. (2002). MRI parcellation of the frontal lobe in boys with attention deficit hyperactivity disorder or Tourette syndrome. Psychiatry Research: Neuroimaging, 116, 63–81. doi: 10.1016/S0925-4927(02) 00066-5.PubMedCrossRefGoogle Scholar
  24. Kostopoulos, P., & Petrides, M. (2003). The mid-ventrolateral prefrontal cortex: insights into its role in memory retrieval. The European Journal of Neuroscience, 17, 1489–1497. doi: 10.1046/j.1460-9568.2003.02574.x.PubMedCrossRefGoogle Scholar
  25. Lacerda, A. L. T., Keshavan, M. S., Hardan, A. Y., Yorbik, O., Brambilla, P., Sassi, R. B., et al. (2004). Anatomic evaluation of the orbitofrontal cortex in major depressive disorder. Biological Psychiatry, 55, 353–358. doi: 10.1016/j.biopsych.2003.08.021.PubMedCrossRefGoogle Scholar
  26. Lyoo, I. N., Kim, M. J., Stoll, A. L., Demopulos, C. M., Parow, A. M., Dager, S. R., et al. (2004). Frontal lobe gray matter density decreases in bipolar I disorder. Biological Psychiatry, 55, 648–651. doi: 10.1016/j.biopsych.2003.10.017.PubMedCrossRefGoogle Scholar
  27. Mayo Clinic. (2004). Analyze 6.0. [computer software]. Kansas: Mayo Clinic.Google Scholar
  28. Mechelli, A., Price, C. J., Friston, K. J., & Ashburner, J. (2005). Voxel-Based Morphometry of the Human Brain: methods and Applications. Current Medical Imaging Reviews, 1, 105–113. doi: 10.2174/1573405054038726.CrossRefGoogle Scholar
  29. Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 63, 81–97. doi: 10.1037/h0043158.PubMedCrossRefGoogle Scholar
  30. Moscovitch, M. (1992). Memory and working with memory: a component process model based on modules and central systems. Journal of Cognitive Neuroscience, 4, 257–267. doi: 10.1162/jocn.1992.4.3.257.CrossRefGoogle Scholar
  31. Nopoulos, D. A., Perg, S., Castellanos, F. X., Delgado, A., Andreasen, N. C., & Rapoport, J. L. (2000). Developmental brain abnormalities in children with attention-deficit hyperactivity disorder. Journal of Child Neurology, 15(2), 102–108. doi: 10.1177/088307380001500208.PubMedCrossRefGoogle Scholar
  32. Owen, A. M., Evan, A. C., & Petrides, M. (1996). Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: a positron emission tomography study. Cerebral Cortex (New York, N.Y.), 6, 31–38. doi: 10.1093/cercor/6.1.31.CrossRefGoogle Scholar
  33. Owen, A. M., Lee, A. C. H., & Williams, E. J. (2000). Dissociating aspects of verbal working memory within the human frontal lobe: further evidence for a “process-specific” model of lateral frontal organization. Psychobiology, 28(2), 146–155.Google Scholar
  34. Petrides, M. (1989). Frontal lobes and memory. In F. Boller & J. Grafman (Eds.), Handbook of Neuropsychology, Volume 3, pp. 75–90. New York: Elsevier.Google Scholar
  35. Petrides, M. (1991). Monitoring of selections of visual stimuli and the primate frontal cortex. Proceedings of the Royal Society of London. Series B. Biological Sciences, 246, 293–298. doi: 10.1098/rspb.1991.0157.CrossRefGoogle Scholar
  36. Petrides, M. (1994). Frontal lobes and working memory: evidence from investigations of the effects of cortical excisions in nonhuman primates. Handbook of Neuropsychology, 9, 59–82.Google Scholar
  37. Petrides, M. (1995). Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey. The Journal of Neuroscience, 15(1), 359–375.PubMedGoogle Scholar
  38. Petrides, M. (1996). Specialized system for the processing of mnemonic information within the primate frontal cortex. Philosophical Transactions of the Royal Society of London, 351, 1455–1462. doi: 10.1098/rstb.1996.0130.PubMedCrossRefGoogle Scholar
  39. Petrides, M. (2000). Dissociable roles of mid-dorsolateral prefrontal and anterior inferotemporal cortex in visual working memory. The Journal of Neuroscience, 20(19), 7496–7503.PubMedGoogle Scholar
  40. Petrides, M. (2002a). The mid-ventrolateral prefrontal cortex and active mnemonic retrieval. Neurobiology of Learning and Memory, 78, 528–538. doi: 10.1006/nlme.2002.4107.CrossRefGoogle Scholar
  41. Petrides, M., & Pandya, D. N. (1994). Comparative architectonic analysis of the human and macaque frontal cortex. Handbook of Neuropsychology, 9, 17–58.Google Scholar
  42. Petrides, M., Alivisatos, B., & Frey, S. (2002b). Differential activation of the human orbital, mid-ventrolateral and mid-dorsolateral prefrontal cortex during the processing of visual stimuli. Proceedings of the National Academy of Sciences of the United States of America, 99, 5649–5654. doi: 10.1073/pnas.072092299.CrossRefGoogle Scholar
  43. Psychological Corporation. (1998). Vigil™ continuous performance test (Version 1.2) [Computer software]. San Antonio, Texas: The Psychological Corporation.Google Scholar
  44. Psychology Software Tools, Inc. (2001). E-Prime. [Computer software]. Pittsburgh, PA: Psychology Software Tools, Inc.Google Scholar
  45. Rizzuto, D. S., Madsen, J. R., Bromfield, E. B., Schulze-Bonhage, A., Seelig, D., Aschenbrenner-Scheibe, R., et al. (2003). Reset of human neocortical oscillations during a working memory task. Proceedings of the National Academy of Sciences of the United States of America, 100, 7931–7936. doi: 10.1073/pnas.0732061100.PubMedCrossRefGoogle Scholar
  46. Schinka, J. A., & Vanderploeg, R. D. (2000). Clinician’s Guide to Neuropsychological Assessment. In R. D. Vanderploeg (Ed.), Estimating premorbid level of functioning (2nd ed.). New Jersey: Lawrence Erlbaum Associates.Google Scholar
  47. Silberstein, R. B., Harris, P. G., Nield, G. A., & Pipingas, A. (2000). Frontal steady-state potential changes predict long-term recognition memory performance. International Journal of Psychophysiology, 39(1), 79–85. doi: 10.1016/S0167-8760(00) 00118-5.PubMedCrossRefGoogle Scholar
  48. Stern, C. E., Owen, A. M., Tracey, I., Look, R. B., Rosen, B. R., & Petrides, M. (2000). Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: evidence from functional magnetic resonance imaging. NeuroImage, 11(5), 392–399. doi: 10.1006/nimg.2000.0569.PubMedCrossRefGoogle Scholar
  49. Sullivan, R., Senior, G., & Hennessy M. (2000). Australian Age-Education and Premorbid Cognitive/Intellectual Estimates for the WAIS-III. Poster presentation at APS College of Clinical Neuropsychologists. Google Scholar
  50. Vasic, N., Walter, H., Höse, A., & Wolf, R. C. (2008). Gray matter reduction associated with psychopathology and cognitive dysfunction in unipolar depression: a voxel-based morphometry study. Journal of Affective Disorders, 109, 107–116. doi: 10.1016/j.jad.2007.11.011.PubMedCrossRefGoogle Scholar
  51. Wilkinson, G. S. (1993). Wide-range achievement test, 3rd edition administration manual. Delaware: Wide Range, Inc.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nicole C. R. McLaughlin
    • 1
    Email author
  • Dana W. Moore
    • 2
  • Carl Fulwiler
    • 3
    • 4
  • Rafeeque Bhadelia
    • 5
    • 6
  • David A. Gansler
    • 3
    • 7
    • 8
  1. 1.Department of Psychiatry and Human BehaviorButler Hospital, Alpert Medical School of Brown UniversityProvidenceUSA
  2. 2.Department of Neurology and NeuroscienceWeill Medical College of Cornell UniversityNew YorkUSA
  3. 3.Lemuel Shattuck HospitalJamaica PlainUSA
  4. 4.Department of PsychiatryUniversity of Massachusetts Medical SchoolWorcesterUSA
  5. 5.Department of RadiologyTufts Medical CenterBostonUSA
  6. 6.Department of RadiologyBeth Israel Deaconess Medical CenterBostonUSA
  7. 7.Department of PsychologySuffolk UniversityBostonUSA
  8. 8.Department of PsychiatryTufts University School of MedicineBostonUSA

Personalised recommendations