Brain Imaging and Behavior

, Volume 3, Issue 1, pp 38–50 | Cite as

Short Term Exposure to a Violent Video Game Induces Changes in Frontolimbic Circuitry in Adolescents

  • Yang WangEmail author
  • Vincent P. Mathews
  • Andrew J. Kalnin
  • Kristine M. Mosier
  • David W. Dunn
  • Andrew J. Saykin
  • William G. Kronenberger


Despite evidence of effects of violent video game play on behavior, the underlying neuronal mechanisms involved in these effects remain poorly understood. We report a functional MRI (fMRI) study during two modified Stroop tasks performed immediately after playing a violent or nonviolent video game. Compared with the violent video game group, the nonviolent video game group demonstrated more activation in some regions of the prefrontal cortex during the Counting Stroop task. In contrast to the violent video game group, significantly stronger functional connectivity between left dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) was identified in the nonviolent video game group. During an Emotional Stroop task, the violent video game group showed more activity in the right amygdala and less activation in regions of the medial prefrontal cortex (MPFC). Furthermore, functional connectivity analysis revealed the negative coupling between right amygdala and MPFC in the nonviolent video game group. By contrast, no significant functional connectivity between right amygdala and MPFC was found in the violent video game group. These results suggest differential engagement of neural circuitry in response to short term exposure to a violent video game as compared to a nonviolent video game.


Functional magnetic resonance imaging Prefrontal cortex Amygdala Video game Media violence 



This work was supported by a grant from the Center for Successful Parenting, Carmel, Indiana.


  1. Adolphs, R., Tranel, D., & Damasio, H. (2001). Emotion recognition from faces and prosody following temporal lobectomy. Neuropsychology, 15, 396. doi: 10.1037/0894-4105.15.3.396.PubMedCrossRefGoogle Scholar
  2. Anderson, C. A. (2004). An update on the effects of playing violent video games. Journal of Adolescence, 27, 113–122. doi: 10.1016/j.adolescence.2003.10.009.PubMedCrossRefGoogle Scholar
  3. Anderson, C. A., Berkowitz, L., Donnerstein, E., Huesmann, R. L., Johnson, J. D., Linz, D., et al. (2003). The influence of media violence on youth. Psychological Science in the Public Interest, 4, 81–110. doi: 10.1111/j.1529-1006.2003.pspi_1433.x.CrossRefGoogle Scholar
  4. Anderson, C. A., & Bushman, B. J. (2001). Effects of violent video games on aggressive behavior, aggressive cognition, aggressive affect, physiological arousal, and prosocial behavior: a meta-analytic review of the scientific literature. Psychological Science, 12, 353–359. doi: 10.1111/1467-9280.00366.PubMedCrossRefGoogle Scholar
  5. Anderson, C. A., & Bushman, B. J. (2002). Psychology. The effects of media violence on society. Science, 295, 2377–2379. doi: 10.1126/science.1070765.PubMedCrossRefGoogle Scholar
  6. Anderson, C. A., & Dill, K. E. (2000). Video games and aggressive thoughts, feelings, and behavior in the laboratory and in life. Journal of Personality and Social Psychology, 78, 772–790. doi: 10.1037/0022-3514.78.4.772.PubMedCrossRefGoogle Scholar
  7. Anderson, D. R., Bryant, J., Murray, J. P., Rich, M., Rivkin, M. J., & Zillmann, D. (2006). Brain imaging—an introduction to a new approach to studying media processes and effects. Media Psychology, 8, 1–6. doi: 10.1207/S1532785XMEP0801_1.CrossRefGoogle Scholar
  8. Bartholow, B. D., Bushman, B. J., & Sestir, M. A. (2006). Chronic violent video game exposure and desensitization to violence: Behavioral and event-related brain potential data. Journal of Experimental Social Psychology, 42, 532. doi: 10.1016/j.jesp.2005.08.006.CrossRefGoogle Scholar
  9. Bartholow, B. D., Sestir, M. A., & Davis, E. B. (2005). Correlates and consequences of exposure to video game violence: hostile personality, empathy, and aggressive behavior. Personality and Social Psychology Bulletin, 31, 1573–1586. doi: 10.1177/0146167205277205.PubMedCrossRefGoogle Scholar
  10. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Sciences, 8, 539–546. doi: 10.1016/j.tics.2004.10.003.PubMedCrossRefGoogle Scholar
  11. Brass, M., & von Cramon, D. Y. (2004). Selection for Cognitive Control: A Functional Magnetic Resonance Imaging Study on the Selection of Task-Relevant Information. The Journal of Neuroscience, 24, 8847–8852. doi: 10.1523/JNEUROSCI.2513-04.2004.PubMedCrossRefGoogle Scholar
  12. Browne, K. D., & Hamilton-Giachritsis, C. (2005). The influence of violent media on children and adolescents:a public-health approach. Lancet, 365, 702–710.PubMedGoogle Scholar
  13. Bufkin, J. L., & Luttrell, V. R. (2005). Neuroimaging studies of aggressive and violent behavior: current findings and implications for criminology and criminal justice. Trauma, Violence & Abuse, 6, 176–191. doi: 10.1177/1524838005275089.CrossRefGoogle Scholar
  14. Bush, G., Frazier, J. A., Rauch, S. L., Seidman, L. J., Whalen, P. J., Jenike, M. A., et al. (1999). Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop. Biological Psychiatry, 45, 1542–1552. doi: 10.1016/S0006-3223(99)00083-9.PubMedCrossRefGoogle Scholar
  15. Bushman, B. J. (1995). Moderating role of trait aggressiveness in the effects of violent media on aggression. Journal of Personality and Social Psychology, 69, 950–960. doi: 10.1037/0022-3514.69.5.950.PubMedCrossRefGoogle Scholar
  16. Bushman, B. J., & Huesmann, L. R. (2006). Short-term and long-term effects of violent media on aggression in children and adults. Archives of Pediatrics & Adolescent Medicine, 160, 348–352. doi: 10.1001/archpedi.160.4.348.CrossRefGoogle Scholar
  17. Carnagey, N. L., Anderson, C. A., & Bartholow, B. D. (2007a). Media violence and social neuroscience: new questions and new opportunities. Current Directions in Psychological Science, 16, 178–182. doi: 10.1111/j.1467-8721.2007.00499.x.CrossRefGoogle Scholar
  18. Carnagey, N. L., Anderson, C. A., & Bushman, B. J. (2007b). The effect of video game violence on physiological desensitization to real-life violence. Journal of Experimental Social Psychology, 43, 489–496. doi: 10.1016/j.jesp.2006.05.003.CrossRefGoogle Scholar
  19. Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. NeuroImage, 37, 343–360. doi: 10.1016/j.neuroimage.2007.03.071.PubMedCrossRefGoogle Scholar
  20. Compton, R. J. (2003). The interface between emotion and attention: a review of evidence from psychology and neuroscience. Behavioral and Cognitive Neuroscience Reviews, 2, 115–129. doi: 10.1177/1534582303002002003.PubMedCrossRefGoogle Scholar
  21. Compton, R. J., Banich, M. T., Mohanty, A., Milham, M. P., Herrington, J., Miller, G. A., et al. (2003). Paying attention to emotion: an fMRI investigation of cognitive and emotional stroop tasks. Cognitive, Affective & Behavioral Neuroscience, 3, 81–96. doi: 10.3758/CABN.3.2.81.CrossRefGoogle Scholar
  22. Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, an International Journal, 29, 162–173. doi: 10.1006/cbmr.1996.0014.PubMedCrossRefGoogle Scholar
  23. Davidson, R. J., Putnam, K. M., & Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation—a possible prelude to violence. Science, 289, 591–594. doi: 10.1126/science.289.5479.591.PubMedCrossRefGoogle Scholar
  24. Dolcos, F., & McCarthy, G. (2006). Brain systems mediating cognitive interference by emotional distraction. The Journal of Neuroscience, 26, 2072–2079. doi: 10.1523/JNEUROSCI.5042-05.2006.PubMedCrossRefGoogle Scholar
  25. Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R., & Hirsch, J. (2006). Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51, 871–882. doi: 10.1016/j.neuron.2006.07.029.PubMedCrossRefGoogle Scholar
  26. Foland, L. C., Altshuler, L. L., Bookheimer, S. Y., Eisenberger, N., Townsend, J., & Thompson, P. M. (2008). Evidence for deficient modulation of amygdala response by prefrontal cortex in bipolar mania. Psychiatry Research: Neuroimaging, 162, 27–37. doi: 10.1016/j.pscychresns.2007.04.007.PubMedCrossRefGoogle Scholar
  27. Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magnetic Resonance in Medicine, 33, 636–647. doi: 10.1002/mrm.1910330508.PubMedCrossRefGoogle Scholar
  28. Funk, J. B., Baldacci, H. B., Pasold, T., & Baumgardner, J. (2004). Violence exposure in real-life, video games, television, movies, and the internet: is there desensitization? Journal of Adolescence, 27, 23–39. doi: 10.1016/j.adolescence.2003.10.005.PubMedCrossRefGoogle Scholar
  29. Gadow, K. D., & Sprafkin, J. (1998). Adolescent Symptom Inventory-4 norms manual. Checkmate Plus: Stony Brook, NY.Google Scholar
  30. Gentile, D. A., Lynch, P. J., Linder, J. R., & Walsh, D. A. (2004). The effects of violent video game habits on adolescent hostility, aggressive behaviors, and school performance. Journal of Adolescence, 27, 5–22. doi: 10.1016/j.adolescence.2003.10.002.PubMedCrossRefGoogle Scholar
  31. Gitelman, D. R., Penny, W. D., Ashburner, J., & Friston, K. J. (2003). Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. NeuroImage, 19, 200–207.PubMedGoogle Scholar
  32. Glover, G. H. (1999). Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage, 9, 416–429. doi: 10.1006/nimg.1998.0419.PubMedCrossRefGoogle Scholar
  33. Goldin, P. R., Hutcherson, C. A., Ochsner, K. N., Glover, G. H., Gabrieli, J. D., & Gross, J. J. (2005). The neural bases of amusement and sadness: a comparison of block contrast and subject-specific emotion intensity regression approaches. NeuroImage, 27, 26–36. doi: 10.1016/j.neuroimage.2005.03.018.PubMedCrossRefGoogle Scholar
  34. King, J. A., Blair, R. J., Mitchell, D. G., Dolan, R. J., & Burgess, N. (2006). Doing the right thing: a common neural circuit for appropriate violent or compassionate behavior. NeuroImage, 30, 1069–1076. doi: 10.1016/j.neuroimage.2005.10.011.PubMedCrossRefGoogle Scholar
  35. Kirsh, S. J., Olczak, P. V., & Mounts, J. R. W. (2005). Violent Video Games Induce an Affect Processing Bias. Media Psychology, 7, 239–250. doi: 10.1207/S1532785XMEP0703_1.CrossRefGoogle Scholar
  36. Kronenberger, W. G., Mathews, V. P., Dunn, D. W., Wang, Y., Wood, E. A., Giauque, A. L., et al. (2005a). Media violence exposure and executive functioning in aggressive and control adolescents. Journal of Clinical Psychology, 61, 725–737. doi: 10.1002/jclp.20022.PubMedCrossRefGoogle Scholar
  37. Kronenberger, W. G., Mathews, V. P., Dunn, D. W., Wang, Y., Wood, E. A., Larsen, J. J., et al. (2005b). Media violence exposure in aggressive and control adolescents: Differences in self- and parent-reported exposure to violence on television and in video games. Aggressive Behavior, 31, 201–216. doi: 10.1002/ab.20021.CrossRefGoogle Scholar
  38. Kuchinke, L., Jacobs, A. M., Grubich, C., Vo, M. L., Conrad, M., & Herrmann, M. (2005). Incidental effects of emotional valence in single word processing: an fMRI study. NeuroImage, 28, 1022–1032. doi: 10.1016/j.neuroimage.2005.06.050.PubMedCrossRefGoogle Scholar
  39. Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., et al. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10, 120–131. doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8.PubMedCrossRefGoogle Scholar
  40. Mathews, V. P., Kronenberger, W. G., Wang, Y., Lurito, J. T., Lowe, M. J., & Dunn, D. W. (2005). Media violence exposure and frontal lobe activation measured by functional magnetic resonance imaging in aggressive and nonaggressive adolescents. Journal of Computer Assisted Tomography, 29, 287–292. doi: 10.1097/01.rct.0000162822.46958.33.PubMedCrossRefGoogle Scholar
  41. Mathiak, K., & Weber, R. (2006). Toward brain correlates of natural behavior: fMRI during violent video games. Human Brain Mapping, 27, 948–956. doi: 10.1002/hbm.20234.PubMedCrossRefGoogle Scholar
  42. Mohanty, A., Herrington, J. D., Koven, N. S., Fisher, J. E., Wenzel, E. A., Webb, A. G., et al. (2005). Neural mechanisms of affective interference in schizotypy. Journal of Abnormal Psychology, 114, 16–27. doi: 10.1037/0021-843X.114.1.16.PubMedCrossRefGoogle Scholar
  43. Murray, J. P., Liotti, M., Ingmundson, P. T., Mayberg, H. S., Pu, Y., Zamarripa, F., et al. (2006). Children’s brain activations while viewing televised violence revealed by fMRI. Media Psychology, 8, 25–37. doi: 10.1207/S1532785XMEP0801_3.CrossRefGoogle Scholar
  44. Northoff, G., Heinzel, A., Bermpohl, F., Niese, R., Pfennig, A., Pascual-Leone, A., et al. (2004). Reciprocal modulation and attenuation in the prefrontal cortex: an fMRI study on emotional-cognitive interaction. Human Brain Mapping, 21, 202–212. doi: 10.1002/hbm.20002.PubMedCrossRefGoogle Scholar
  45. Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9, 242–249. doi: 10.1016/j.tics.2005.03.010.PubMedCrossRefGoogle Scholar
  46. Ochsner, K. N., Ray, R. D., Cooper, J. C., Robertson, E. R., Chopra, S., Gabrieli, J. D., et al. (2004). For better or for worse: neural systems supporting the cognitive down– and up–regulation of negative emotion. NeuroImage, 23, 483–499. doi: 10.1016/j.neuroimage.2004.06.030.PubMedCrossRefGoogle Scholar
  47. Phaf, R. H., & Kan, K. J. (2007). The automaticity of emotional Stroop: a meta-analysis. Journal of Behavior Therapy and Experimental Psychiatry, 38, 184–199. doi: 10.1016/j.jbtep.2006.10.008.PubMedCrossRefGoogle Scholar
  48. Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16, 331–348. doi: 10.1006/nimg.2002.1087.PubMedCrossRefGoogle Scholar
  49. Phelps, E. A. (2006). Emotion and cognition: insights from studies of the human amygdala. Annual Review of Psychology, 57, 27–53. doi: 10.1146/annurev.psych.56.091103.070234.PubMedCrossRefGoogle Scholar
  50. Quirk, G. J., & Beer, J. S. (2006). Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Current Opinion in Neurobiology, 16, 723–727. doi: 10.1016/j.conb.2006.07.004.PubMedCrossRefGoogle Scholar
  51. Raine, A., Buchsbaum, M., & LaCasse, L. (1997). Brain abnormalities in murderers indicated by positron emission tomography. Biological Psychiatry, 42, 495–508. doi: 10.1016/S0006-3223(96)00362-9.PubMedCrossRefGoogle Scholar
  52. Roberts, D. F., & Henry, J. K. F. F. (2005). Generation M : media in the lives of 8–18 year-olds. Henry J. Kaiser Family Foundation: [Menlo Park, CA].Google Scholar
  53. Sigurdsson, J. F., Gudjonsson, G. H., Bragason, A. V., Kristjansdottir, E., & Sigfusdottir, I. D. (2006). The role of violent cognition in the relationship between personality and the involvement in violent films and computer games. Personality and Individual Differences, 41, 381–392. doi: 10.1016/j.paid.2006.02.006.CrossRefGoogle Scholar
  54. Talairach, J., & Tournoux, P.(1988.) Co-planar Stereotaxic Atlas of the Human Brain. Thieme.Google Scholar
  55. Uhlmann, E., & Swanson, J. (2004). Exposure to violent video games increases automatic aggressiveness. Journal of Adolescence, 27, 41–52. doi: 10.1016/j.adolescence.2003.10.004.PubMedCrossRefGoogle Scholar
  56. Williams, L. M., Das, P., Liddell, B. J., Kemp, A. H., Rennie, C. J., & Gordon, E. (2006). Mode of functional connectivity in amygdala pathways dissociates level of awareness for signals of fear. The Journal of Neuroscience, 26, 9264–9271. doi: 10.1523/JNEUROSCI.1016-06.2006.PubMedCrossRefGoogle Scholar
  57. Worsley, K. J., Liao, C. H., Aston, J., Petre, V., Duncan, G. H., Morales, F., & Evans, A. C. (2002). A general statistical analysis for fMRI data. NeuroImage, 15, 1–15. doi: 10.1006/nimg.2001.0933.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yang Wang
    • 1
    Email author
  • Vincent P. Mathews
    • 1
  • Andrew J. Kalnin
    • 1
  • Kristine M. Mosier
    • 1
  • David W. Dunn
    • 2
  • Andrew J. Saykin
    • 1
  • William G. Kronenberger
    • 2
  1. 1.Department of RadiologyIndiana University School of MedicineIndianapolisUSA
  2. 2.Department of PsychiatryIndiana University School of MedicineIndianapolisUSA

Personalised recommendations