Brain Imaging and Behavior

, Volume 3, Issue 1, pp 51–63 | Cite as

Age-Related Changes in the Anatomy of Language Regions in Autism Spectrum Disorder

  • Tracey A. KnausEmail author
  • Andrew M. Silver
  • Kelli C. Dominick
  • Melanee D. Schuring
  • Nancy Shaffer
  • Kristen A. Lindgren
  • Robert M. Joseph
  • Helen Tager-Flusberg


Impairments in language and communication are core features of autism spectrum disorder (ASD). The anatomy of critical language areas has been studied in ASD with inconsistent findings. We used MRI to measure gray matter volume and asymmetry of Heschl’s gyrus, planum temporale, pars triangularis, and pars opercularis in 40 children and adolescents with ASD and 40 typically developing individuals, each divided into younger (7–11 years) and older (12–19 years) cohorts. The older group had larger left planum temporale volume and stronger leftward asymmetry than the younger group, regardless of diagnosis. The pars triangularis and opercularis together were larger in ASD than controls. Correlations between frontal language areas with language and symptom severity scores were significant in younger ASD children. Results suggest similar developmental changes in planum temporale anatomy in both groups, but group differences in pars triangularis and opercularis that may be related to language abilities and autism symptom severity.


Autism Language MRI Asymmetry Development 



This study was supported by a program project grant from the National Institute on Deafness and Other Communication Disorders (U19 DC 03610), which is part of the NICHD/NIDCD funded Collaborative Programs on Excellence in Autism, as well as funding for the GCRC at Boston University School of Medicine (M01-RR0533). This study was also supported by NINDS F30 NS055511. We thank Lin Themelis for help with screening and scheduling participants and Danielle Delosh for help with measurements of total hemisphere volume. We also extend our sincere gratitude to the children and families who participated in this study.


  1. Abell, F., Krams, M., Ashburner, J., Passingham, R., Friston, K., Frackowiak, R., et al. (1999). The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. Neuroreport, 10, 1647–1651. doi: 10.1097/00001756-199906030-00005.PubMedCrossRefGoogle Scholar
  2. Albanese, E., Merlo, A., Albanese, A., & Gomez, E. (1989). Anterior speech region. Asymmetry and weight-surface correlation. Neurology, 40, 353–362.Google Scholar
  3. Alexander, M. P., Naeser, M. A., & Palumbo, C. (1990). Broca’s area aphasias: aphasia after lesions including the frontal operculum. Neurology, 40, 353–362.PubMedGoogle Scholar
  4. American Psychiatric Association (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
  5. Aylward, E. H., Minshew, N. J., Field, K., Sparks, B. F., & Singh, N. (2002). Effects of age on brain volume and head circumference in autism. Neurology, 59, 175–183.PubMedGoogle Scholar
  6. Barta, P. E., Dhingra, L., Royall, R., & Schwartz, E. (1997). Improving stereological estimates for the volume of structures identified in three-dimensional arrays of spatial data. Journal of Neuroscience Methods, 75, 111–118. doi: 10.1016/S0165-0270(97)00049-6.PubMedCrossRefGoogle Scholar
  7. Beaton, A. A. (1997). The relation of planum temporale asymmetry and morphology of the corpus callosum to handedness, gender, and dyslexia: a review of the evidence. Brain and Language, 60, 255–322. doi: 10.1006/brln.1997.1825.PubMedCrossRefGoogle Scholar
  8. Bigler, E. D., Tate, D. F., Neeley, E. S., Wolfson, L. J., Miller, M. J., Rice, S. A., et al. (2003). Temporal lobe, autism, and macrocephaly. AJNR. American Journal of Neuroradiology, 24, 2066–2076.PubMedGoogle Scholar
  9. Blanton, R. E., Levitt, J. G., Thompson, P. M., Narr, K. L., Capetillo-Cunliffe, L., Nobel, A., et al. (2001). Mapping cortical asymmetry and complexity patterns in normal children. Psychiatry Research: Neuroimaging Section, 107, 29–43. doi: 10.1016/S0925-4927(01)00091-9.CrossRefGoogle Scholar
  10. Blumenfeld, H. K., Booth, J. R., & Burman, D. D. (2006). Differential prefrontal-temporal neural correlates of semantic processing in children. Brain and Language, 99, 226–235.PubMedGoogle Scholar
  11. Boddaert, N., Chabane, N., Gervais, H., Good, C. D., Bourgeois, M., Plumet, M. -H., et al. (2004). Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. NeuroImage, 23, 364–369. doi: 10.1016/j.neuroimage.2004.06.016.PubMedCrossRefGoogle Scholar
  12. Carper, R. A., Moses, P., Tigue, Z. D., & Courchesne, E. (2002). Cerebral lobes in autism: early hyperplasia and abnormal age effects. NeuroImage, 16, 1038–1051. doi: 10.1006/nimg.2002.1099.PubMedCrossRefGoogle Scholar
  13. Chi, J. G., Dooling, E. C., & Gilles, F. H. (1977). Left-right asymmetries of the temporal speech areas of the human fetus. Archives of Neurology, 34, 346–348.PubMedGoogle Scholar
  14. Courchesne, E. (2004). Brain development in autism: early overgrowth followed by premature arrest of growth. Mental Retardation and Developmental Disabilities Research Reviews, 10, 106–111. doi: 10.1002/mrdd.20020.PubMedCrossRefGoogle Scholar
  15. Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology, 57, 245–254.PubMedGoogle Scholar
  16. Courchesne, E., & Pierce, K. (2005). Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. International Journal of Developmental Neuroscience, 23, 153–170. doi: 10.1016/j.ijdevneu.2005.01.003.PubMedCrossRefGoogle Scholar
  17. Dapretto, M., & Bookheimer, S. Y. (1999). Form and content: dissociating syntax and semantics in sentence comprehension. Neuron, 24, 427–432. doi: 10.1016/S0896-6273(00)80855-7.PubMedCrossRefGoogle Scholar
  18. de Fossé, L., Hodge, S. M., Makris, N., Kennedy, D. N., Caviness Jr, V. S., McGrath, L., et al. (2004). Language-association cortex asymmetry in autism and specific language impairment. Annals of Neurology, 56, 757–766. doi: 10.1002/ana.20275.PubMedCrossRefGoogle Scholar
  19. Démonet, J. F., Chollet, F., Ramsay, S., Cardebat, D., Nespoulous, J. -L., Wise, R., et al. (1992). The anatomy of phonological and semantic processing in the normal subjects. Brain, 115, 1753–1768. doi: 10.1093/brain/115.6.1753.PubMedCrossRefGoogle Scholar
  20. Elliot, C. D. (1990). Differential ability scales: introductory and technical handbook. New York: The Psychological Corporation.Google Scholar
  21. Embick, D., Marantz, A., Miyashita, Y., O’Neil, W., & Sakai, K. L. (2000). A syntactic specialization for Broca’s area. Proceedings of the National Academy of Sciences of the United States of America, 97, 6150–6154. doi: 10.1073/pnas.100098897.PubMedCrossRefGoogle Scholar
  22. Falzi, G., Perrone, P., & Vignolo, L. A. (1982). Right-left asymmetry in anterior speech region. Archives of Neurology, 39, 239–240.PubMedGoogle Scholar
  23. Foundas, A. L., Eure, K. F., Luevano, L. F., & Weinberger, D. R. (1998). MRI asymmetries of Broca’s area: the pars triangularis and pars opercularis. Brain and Language, 64, 282–296. doi: 10.1006/brln.1998.1974.PubMedCrossRefGoogle Scholar
  24. Foundas, A. L., Leonard, C. M., Gilmore, R. L., Fennell, E. B., & Heilman, K. M. (1994). Planum temporale asymmetry and language dominance. Neuropsychologia, 32, 1225–1231. doi: 10.1016/0028-3932(94)90104-X.PubMedCrossRefGoogle Scholar
  25. Foundas, A. L., Leonard, C. M., Gilmore, R. L., Fennell, E. B., & Heilman, K. M. (1996). Pars triangularis asymmetry and language dominance. Proceedings of the National Academy of Sciences of the United States of America, 93, 719–722. doi: 10.1073/pnas.93.2.719.PubMedCrossRefGoogle Scholar
  26. Foundas, A. L., Leonard, C. M., & Heilman, K. M. (1995). Morphologic cerebral asymmetries and handedness the pars triangularis and planum temporale. Archives of Neurology, 52, 501–508.PubMedGoogle Scholar
  27. Foundas, A. L., Weisberg, A., Browning, C. A., & Weinberger, D. R. (2001). Morphology of the frontal operculum: a volumetric magnetic resonance imaging study of the pars triangularis. Journal of Neuroimaging, 11, 153–159.PubMedGoogle Scholar
  28. Gaffrey, M. S., Kleinhaus, N. M., Haist, F., Akshoomoff, N., Campbell, A., Courchesne, E., et al. (2007). A typical participation of visual cortex during word processing in autism: an fMRI study of semantic decision. Neuropsychologia, 45, 1672–1684. doi: 10.1016/j.neuropsychologia.2007.01.008.PubMedCrossRefGoogle Scholar
  29. Gauger, L. M., Lombardino, L. J., & Leonard, C. M. (1997). Brain morphology in children with specific language impairment. Journal of Speech, Language, and Hearing Research: JSLHR, 40, 1272–1284.PubMedGoogle Scholar
  30. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 8174–8179. doi: 10.1073/pnas.0402680101.PubMedCrossRefGoogle Scholar
  31. Habib, M. (1989). Anatomical asymmetries of the human cerebral cortex. The International Journal of Neuroscience, 47, 67–80. doi: 10.3109/00207458908987419.PubMedCrossRefGoogle Scholar
  32. Hardan, A. Y., Minshew, N. J., Mallikarjuhn, M., & Keshavan, M. S. (2001). Brain volume in autism. Journal of Child Neurology, 16, 421–424.PubMedGoogle Scholar
  33. Harris, G. J., Chabris, C. F., Clark, J., Urban, T., Aharon, I., Steele, S., et al. (2006). Brain activation during semantic processing in autism spectrum disorders via functional magnetic resonance imaging. Brain and Cognition, 61, 54–68. doi: 10.1016/j.bandc.2005.12.015.PubMedCrossRefGoogle Scholar
  34. Hazlett, H. C., Poe, M., Gerig, G., Smith, R. G., Provenzale, J., Ross, A., et al. (2005). Magnetic resonance imaging and head circumference study of brain size in autism. Archives of General Psychiatry, 62, 1366–1376. doi: 10.1001/archpsyc.62.12.1366.PubMedCrossRefGoogle Scholar
  35. Herbert, M. R., Harris, G. J., Adrien, K. T., Ziegler, D. A., Makris, N., Kennedy, D. N., et al. (2002). Abnormal asymmetry in language association cortex in autism. Annals of Neurology, 52, 588–596. doi: 10.1002/ana.10349.PubMedCrossRefGoogle Scholar
  36. Herbert, M. R., Ziegler, D. A., Deutsch, C. K., O’Brien, L. M., Kennedy, D. N., Filipek, P. A., et al. (2005). Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. Brain, 128, 213–226. doi: 10.1093/brain/awh330.PubMedCrossRefGoogle Scholar
  37. Herbert, M. R., Ziegler, D. A., Deutsch, C. K., O’Brien, L. M., Lange, N., Bakardjiev, A., et al. (2003). Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain, 126, 1182–1192. doi: 10.1093/brain/awg110.PubMedCrossRefGoogle Scholar
  38. Jäncke, L., Schlaug, G., Huang, Y., & Steinmetz, H. (1994). Asymmetry of the planum parietale. Neuroreport, 5, 1161–1163.PubMedGoogle Scholar
  39. Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain, 127, 1811–1821. doi: 10.1093/brain/awh199.PubMedCrossRefGoogle Scholar
  40. Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2006). Sentence comprehension in autism: thinking in pictures with decreased functional connectivity. Brain, 129, 2484–2493. doi: 10.1093/brain/awl164.PubMedCrossRefGoogle Scholar
  41. Kaufman, A. S., & Kaufman, N. L. (2004). Kaufman brief intelligence test (2nd ed.). Circle Pines, MN: AGS.Google Scholar
  42. Kjelgaard, M., & Tager-Flusberg, H. (2001). An investigation of language impairment in autism: implications for genetic subgroups. Language and Cognitive Processes, 16, 287–308. doi: 10.1080/01690960042000058.PubMedCrossRefGoogle Scholar
  43. Knaus, T. A., Bollich, A. M., Corey, D. M., Lemen, L. C., & Foundas, A. L. (2006). Variability in perisylvian brain anatomy in healthy adults. Brain and Language, 97, 219–232. doi: 10.1016/j.bandl.2005.10.008.PubMedCrossRefGoogle Scholar
  44. Knaus, T. A., Corey, D. M., Bollich, A. M., Lemen, L. C., & Foundas, A. L. (2007). Anatomical asymmetries of anterior perisylvian speech-language regions. Cortex, 43, 499–510. doi: 10.1016/S0010-9452(08)70244-2.PubMedCrossRefGoogle Scholar
  45. Lord, C., Rutter, M., DiLavore, P. C., & Risi, S. (1999). Autism diagnostic observation scheduleWPS (ADOS-WPS). Los Angeles, CA: Western Psychological Services.Google Scholar
  46. McAlonan, G. M., Cheung, V., Cheung, C., Suckling, J., Lam, G. Y., Tai, K. S., et al. (2005). Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain, 128, 268–276. doi: 10.1093/brain/awh332.PubMedCrossRefGoogle Scholar
  47. McCaffery, P., & Deutsh, C. K. (2005). Macrocephaly and the control of brain growth in autistic disorders. Progress in Neurobiology, 77, 38–56. doi: 10.1016/j.pneurobio.2005.10.005.PubMedCrossRefGoogle Scholar
  48. Morgan, A. E., & Hynd, G. W. (1998). Dyslexia, neurolinguistic ability, and anatomical variation of the planum temporale. Neuropsychology Review, 8, 79–93. doi: 10.1023/A:1025609216841.PubMedCrossRefGoogle Scholar
  49. Paulesu, E., Frith, C. D., & Frackowiak, R. S. J. (1993). The neural correlates of the verbal component of working memory. Nature, 362, 342–345. doi: 10.1038/362342a0.PubMedCrossRefGoogle Scholar
  50. Piro, J. M. (1998). Handedness and intelligence: patterns of hand preference in gifted and nongifted children. Developmental Neuropsychology, 14, 619–630.CrossRefGoogle Scholar
  51. Piven, J., Arndt, S., Bailey, J., & Andreasen, N. (1996). Regional brain enlargement in autism: a magnetic resonance imaging study. Journal of the American Academy of Child and Adolescent Psychiatry, 35, 530–536.PubMedCrossRefGoogle Scholar
  52. Piven, J., Arndt, S., Bailey, J., Havercamp, S., Andreasen, N. C., & Palmer, P. (1995). An MRI study of brain size in autism. The American Journal of Psychiatry, 152, 1145–1149.PubMedGoogle Scholar
  53. Redcay, E., & Courchesne, E. (2005). When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biological Psychiatry, 58, 1–9. doi: 10.1016/j.biopsych.2005.03.026.PubMedCrossRefGoogle Scholar
  54. Robichon, F., Levrier, O., Farnarier, P., & Habib, M. (2000). Developmental dyslexia: atypical cortical asymmetries and functional significance. European Journal of Neurology, 7, 35–46. doi: 10.1046/j.1468-1331.2000.00020.x.PubMedCrossRefGoogle Scholar
  55. Rojas, D. C., Bawn, S. D., Benkers, T. L., Reite, M. L., & Rogers, S. J. (2002). Smaller left hemisphere planum temporale in adults with autistic disorder. Neuroscience Letters, 328, 237–240. doi: 10.1016/S0304-3940(02)00521-9.PubMedCrossRefGoogle Scholar
  56. Rojas, D. C., Camou, S. L., Reite, M. L., & Rogers, S. J. (2005). Planum temporale volume in children and adolescents with autism. Journal of Autism and Developmental Disorders, 35, 479–486. doi: 10.1007/s10803-005-5038-7.PubMedCrossRefGoogle Scholar
  57. Rutter, M., Le Couteur, A., & Lord, C. (2003). Autism diagnostic interviewrevised. Los Angeles, CA: Western Psychological Services.Google Scholar
  58. Semel, E., Wiig, E. H., & Secord, W. A. (1995). Clinical evaluation of language fundamentals. (3rd ed.) San Antonio, TX: The Psychological Corporation, Harcourt Brace and Co.Google Scholar
  59. Shapleske, J., Rossell, S. L., Woodruff, P. W. R., & David, A. S. (1999). The planum temporale: a systematic, quantitative review of its structural, functional, and clinical significance. Brain Research. Brain Research Reviews, 29, 26–49. doi: 10.1016/S0165-0173(98)00047-2.PubMedCrossRefGoogle Scholar
  60. Smith, S. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155. doi: 10.1002/hbm.10062.PubMedCrossRefGoogle Scholar
  61. Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6, 309–315. doi: 10.1038/nn1008.PubMedCrossRefGoogle Scholar
  62. Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. The Journal of Neuroscience, 24, 8223–8231. doi: 10.1523/JNEUROSCI.1798-04.2004.PubMedCrossRefGoogle Scholar
  63. Sowell, E. R., Thompson, P. M., Rex, D., Kornsand, D., Tessner, K. D., Jernigan, T. L., et al. (2002). Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: maturation in perisylvian cortices. Cerebral Cortex (New York, N.Y.), 12, 17–26. doi: 10.1093/cercor/12.1.17.CrossRefGoogle Scholar
  64. Sowell, E. R., Thompson, P. M., Tessner, K. D., & Toga, A. W. (2001). Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. The Journal of Neuroscience, 21, 8819–8829.PubMedGoogle Scholar
  65. Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., et al. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59, 184–192.PubMedGoogle Scholar
  66. Steinmetz, H., Volkmann, J., Jancke, L., & Freund, H. J. (1991). Anatomical left-right asymmetry of language-related temporal cortex is different in left- and right-handers. Annals of Neurology, 29, 315–319. doi: 10.1002/ana.410290314.PubMedCrossRefGoogle Scholar
  67. Stuss, D. T., & Benson, D. F. (1986). The Frontal Lobes. New York: Raven Press.Google Scholar
  68. Tager-Flusberg, H., Paul, R., & Lord, C. E. (2005). Language and communication in autism. In F. Volkmar, R. Paul, A. Klin, & D. J. Cohen (Eds.), Handbook of autism and pervasive developmental disorder (pp. 335–364, 3rd ed.). New York: Wiley.Google Scholar
  69. Tomaiuolo, F., MacDonald, J. D., Caramanos, Z., Posner, G., Chiavaras, M., Evans, A. C., et al. (1999). Morphology, morphometry and probability mapping of the pars opercularis of the inferior frontal gyrus: an in vivo MRI analysis. The European Journal of Neuroscience, 11, 3033–3046. doi: 10.1046/j.1460-9568.1999.00718.x.PubMedCrossRefGoogle Scholar
  70. Tzourio, N., Nkanga-Ngila, B., & Mazoyer, B. (1998). Left planum temporale surface correlates with functional dominance during story listening. Neuroreport, 9, 829–833. doi: 10.1097/00001756-199803300-00012.PubMedCrossRefGoogle Scholar
  71. Volkmar, F. R., & Lord, C. (2007). Diagnosis and definition of autism and other pervasive developmental disorders. In F. R. Volkmar (Ed.), Autism and pervasive developmental disorders (2nd ed., pp. 1–31). New York: Cambridge University Press.Google Scholar
  72. Wada, J. J., Clarke, R., & Hamm, A. (1975). Cerebral hemispheric asymmetry in humans. Archives of Neurology, 32, 239–246.PubMedGoogle Scholar
  73. Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. New York: Harcourt Association.Google Scholar
  74. Witelson, S. F., & Kigar, D. L. (1992). Sylvian fissure morphology and asymmetry in men and women: bilateral differences in relation to handedness in men. The Journal of Comparative Neurology, 323, 236–340. doi: 10.1002/cne.903230303.CrossRefGoogle Scholar
  75. Witelson, S. F., & Pallie, W. (1973). Left hemisphere specialization for language in the newborn. Neuroanatomical evidence of asymmetry. Brain, 96, 641–646. doi: 10.1093/brain/96.3.641.PubMedCrossRefGoogle Scholar
  76. Zatorre, R. J., Meyer, E., Gjedde, A., & Evans, A. C. (1996). PET studies of phonetic processing of speech: review, replication, and reanalysis. Cerebral Cortex (New York, N.Y.), 6, 21–30. doi: 10.1093/cercor/6.1.21.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Tracey A. Knaus
    • 1
    Email author
  • Andrew M. Silver
    • 1
  • Kelli C. Dominick
    • 1
  • Melanee D. Schuring
    • 1
  • Nancy Shaffer
    • 1
  • Kristen A. Lindgren
    • 1
  • Robert M. Joseph
    • 1
  • Helen Tager-Flusberg
    • 1
  1. 1.Department of Anatomy and Neurobiology, School of MedicineBoston UniversityBostonUSA

Personalised recommendations